Containtes Cosmologiques déduites des Effets de Lentille Gravitationnelle dans les Amas de Galaxies

Soutenance de Thèse

Ghislain GOLSE

Toulouse, le 16 Octobre 2002

Directeurs de thèse : Geneviève Soucail et Jean-Paul Kneib Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées 14, av. E.-Belin 31400 Toulouse

Thèse G. Golse, 16 Octobre 2002

• Introduction

Thèse G. Golse, 16 Octobre 2002

Introduction

 Influence de la cosmologie sur la formation des images

Plan

Introduction

- Influence de la cosmologie sur la formation des images
- Contraintes cosmologiques : simulations numériques

Thèse G. Golse, 16 Octobre 2002

Introduction

- Influence de la cosmologie sur la formation des images
- Contraintes cosmologiques : simulations numériques

• Applications à des amas-lentilles observés

Plan

Introduction

- Influence de la cosmologie sur la formation des images
- Contraintes cosmologiques : simulations numériques

• Applications à des amas-lentilles observés

Conclusion

Introduction

Jaffe et al. (2001) Phys. Rev. Lett. 86, 3475

- Cadre cosmologique
 - ★ Relativité Générale
 - ★ Principe Cosmologique
 - * Métrique de Friedmann-Lemaître-Robertson-Walker

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G}{3} \left(\rho_{\mathsf{M}} + \rho_{\mathsf{Q}}\right) + \frac{c^2}{3}\Lambda - \frac{c^2}{R^2}k$$

• Paramètres cosmologiques

- * densité de matière $\Omega_{M0} = \rho_{M0}/\rho_{crit}$ $\rho_{crit} = \frac{3 H_0^2}{8\pi G}$
- \star constante cosmologique $\Omega_{\Lambda} = \Lambda \, c^2 / (3 \, H_0^2)$

* quintessence : paramètre $w = P_Q/\rho_{Q0}$, densité $\Omega_{Q0} = \frac{\rho_{Q0}}{\rho_{crit}}$

• Importance

* ils donnent la géométrie et la dynamique de l'Univers
* et précisent le scénario de formation des structures

- Cadre cosmologique
 - ★ Relativité Générale
 - ★ Principe Cosmologique
 - * Métrique de Friedmann-Lemaître-Robertson-Walker

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G}{3} \left(\rho_{\mathsf{M}} + \rho_{\mathsf{Q}}\right) + \frac{c^2}{3}\Lambda - \frac{c^2}{R^2}k$$

- Paramètres cosmologiques
 - * densité de matière $\Omega_{M0} = \rho_{M0}/\rho_{crit}$ $\rho_{crit} = \frac{3 H_0^2}{8\pi G}$
 - \star constante cosmologique $\Omega_{\Lambda} = \Lambda \, c^2 / (3 \, H_0^2)$

* quintessence : paramètre $w = P_Q/\rho_{Q0}$, densité $\Omega_{Q0} = \frac{\rho_{Q0}}{\rho_{crit}}$

• Importance

* ils donnent la géométrie et la dynamique de l'Univers
* et précisent le scénario de formation des structures

- Cadre cosmologique
 - ★ Relativité Générale
 - ★ Principe Cosmologique
 - * Métrique de Friedmann-Lemaître-Robertson-Walker

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G}{3} \left(\rho_{\mathsf{M}} + \rho_{\mathsf{Q}}\right) + \frac{c^2}{3}\Lambda - \frac{c^2}{R^2}k$$

• Paramètres cosmologiques

- * densité de matière $\Omega_{M0} = \rho_{M0}/\rho_{crit}$ $\rho_{crit} = \frac{3 H_0^2}{8\pi G}$
- \star constante cosmologique $\Omega_{\Lambda} = \Lambda \, c^2 / (3 \, H_0^2)$

* quintessence : paramètre $w = P_Q/\rho_{Q0}$, densité $\Omega_{Q0} = \frac{\rho_{Q0}}{\rho_{crit}}$

Importance

* ils donnent la géométrie et la dynamique de l'Univers
* et précisent le scénario de formation des structures

- Cadre cosmologique
 - ★ Relativité Générale
 - ★ Principe Cosmologique
 - ★ Métrique de Friedmann-Lemaître-Robertson-Walker

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G}{3} \left(\rho_{\mathsf{M}} + \rho_{\mathsf{Q}}\right) + \frac{c^2}{3}\Lambda - \frac{c^2}{R^2}k$$

• Paramètres cosmologiques

- * densité de matière $\Omega_{M0} = \rho_{M0}/\rho_{crit}$ $\rho_{crit} = \frac{3 H_0^2}{8\pi G}$
- \star constante cosmologique $\Omega_{\Lambda} = \Lambda \, c^2 / (3 \, H_0^2)$

* quintessence : paramètre $w = P_Q/\rho_{Q0}$, densité $\Omega_{Q0} = \frac{\rho_{Q0}}{\rho_{crit}}$

• Importance

ils donnent la géométrie et la dynamique de l'Univers
t précisent le scénario de formation des structures

Contraintes cosmologiques actuelles

Anisotropies du Fond Diffus
 Cosmologique

 Univers plat

Benoît et al. (2002), astro-ph/0210306

Contraintes cosmologiques actuelles

Anisotropies du Fond Diffus
 Cosmologique

 Univers plat

Benoît et al. (2002), astro-ph/0210306

Amas de galaxies : généralités

- Objets gravitationnellement liés les plus massifs de l'Univers
 - \star formation récente ($z \lesssim 1$)
 - * $M \simeq 10^{14} / 10^{15} M_{\odot}$
 - ★ quelques centaines de galaxies
 - * puits de potentiel de matière noire
- Intérêt cosmologique
 - distribution de la densité des amas suivant leur masse (fonction de masse)
 - * structure interne de ces halos (profil de masse)

Amas de galaxies : généralités

- Objets gravitationnellement liés les plus massifs de l'Univers
 - \star formation récente ($z \lesssim 1)$
 - * $M \simeq 10^{14} / 10^{15} M_{\odot}$
 - ★ quelques centaines de galaxies
 - * puits de potentiel de matière noire
- Intérêt cosmologique
 - distribution de la densité des amas suivant leur masse (fonction de masse)
 - * structure interne de ces halos (profil de masse)

Amas de galaxies : généralités

- Objets gravitationnellement liés les plus massifs de l'Univers
 - \star formation récente ($z \lesssim 1$)
 - * $M \simeq 10^{14} / 10^{15} M_{\odot}$
 - ★ quelques centaines de galaxies
 - * puits de potentiel de matière noire
- Intérêt cosmologique
 - distribution de la densité des amas suivant leur masse (fonction de masse)
 - * structure interne de ces halos (profil de masse)

• Théorie : singularité centrale (SIS) ou cœur plat (King)

• Théorie : singularité centrale (SIS) ou cœur plat (King) • Simulations numériques : $\rho \propto \frac{1}{r/r_{\rm c}(1+r/r_{\rm c})^2}$ (NFW 1995), $\rho \propto \frac{1}{r^{3/2}}$ (Moore 1999)

- Théorie : singularité centrale (SIS) ou cœur plat (King)
- Simulations numériques : $\rho \propto \frac{1}{r/r_{\rm c}(1+r/r_{\rm c})^2}$ (NFW 1995), $\rho \propto \frac{1}{r^{3/2}}$ (Moore 1999)
- Observations

(NFW

Amas de galaxies : profil de masse

- Théorie : singularité centrale (SIS) ou cœur plat (King)
- Simulations numériques : $ho \propto$

1995),
$$ho \propto rac{1}{r^{3/2}}$$
 (Moore 1999)

- Observations
 - dynamique des galaxies
 Czoske et al. (2001)

 $r/r_{c}(1+r/r_{c})^{2}$

- Théorie : singularité centrale (SIS) ou cœur plat (King)
- Simulations numériques : $\rho \propto$

1995),
$$ho \propto rac{1}{r^{3/2}}$$
 (Moore 1999)

- Observations
 - dynamique des galaxies
 Czoske et al. (2001)
 - \star observations du gaz X
 - Briel et al. (2001)

 $\frac{-}{r/r_{\rm c}(1+r/r_{\rm c})^2}$

(NFW

- Théorie : singularité centrale (SIS) ou cœur plat (King)
- Simulations numériques : $\rho \propto$

1995),
$$ho \propto rac{1}{r^{3/2}}$$
 (Moore 1999)

- Observations
 - dynamique des galaxies
 Czoske et al. (2001)
 - \star observations du gaz X
 - Briel et al. (2001)
 - * effet Sunyaev Zeldovich
 Pointecouteau et al. (2002)

 $\frac{-}{r/r_{\rm c}(1+r/r_{\rm c})^2}$

(NFW

- Théorie : singularité centrale (SIS) ou cœur plat (King)
- Simulations numériques : $\rho \propto$

1995),
$$ho \propto rac{1}{r^{3/2}}$$
 (Moore 1999)

- Observations
 - dynamique des galaxies
 Czoske et al. (2001)
 - \star observations du gaz X
 - Briel et al. (2001)
 - effet Sunyaev Zeldovich
 Pointecouteau et al. (2002)
 - ★ lentilles gravitationnelles

 $r/r_{c}(1+r/r_{c})^{2}$

(NFW

Lentilles gravitationnelles

• Déformations locales d'une source par une lentille

- ★ Amplification
- ★ Déplacement
- ★ Distortion

Lentilles gravitationnelles

• Déformations locales d'une source par une lentille

- ★ Amplification
- ★ Déplacement
- \star Distortion

• Équation des lentilles : $\boldsymbol{\theta}_{\rm S} = \boldsymbol{\theta}_{\rm I} - \frac{2}{c^2} \frac{D_{\rm LS}}{D_{\rm OS} D_{\rm OI}} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \phi(\boldsymbol{\theta}_{\rm I})$

Amas-lentilles

Wittman (2002) astro-ph/0208063

Amas-lentilles

Wittman (2002) astro-ph/0208063

- Régions caractéristiques des amas et estimateurs de masse
 - ★ Faibles déformations
 - ★ Biais d'amplification
 - ★ Fortes déformations

Influence de la cosmologie sur la formation des images

Golse, Kneib & Soucail (2002) A&A 387, 788

Rapport de distances diamètre-angulaire

• Équation des lentilles : $\boldsymbol{\theta}_{\mathrm{S}} = \boldsymbol{\theta}_{\mathrm{I}} - \frac{2}{c^2} \frac{D_{\mathrm{LS}}}{D_{\mathrm{OS}} D_{\mathrm{OL}}} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \phi(\boldsymbol{\theta}_{\mathrm{I}})$

Rapport de distances diamètre-angulaire

• Équation des lentilles : $\boldsymbol{\theta}_{\mathrm{S}} = \boldsymbol{\theta}_{\mathrm{I}} - \frac{2}{c^2} \frac{D_{\mathrm{LS}}}{D_{\mathrm{OS}} D_{\mathrm{OL}}} \boldsymbol{\nabla}_{\boldsymbol{\theta}} \phi(\boldsymbol{\theta}_{\mathrm{I}})$

• $\nabla_{\boldsymbol{\theta}} \phi(\boldsymbol{\theta}_{\mathrm{I}}) = \sigma_0^2 D_{\mathrm{OL}} \boldsymbol{f}(\boldsymbol{\theta}_{\mathrm{I}}; \dots) \Rightarrow E(\boldsymbol{z}_{\mathsf{L}}, \boldsymbol{z}_{\mathsf{S}}, \Omega_{\mathsf{M0}}, \Omega_{\Lambda}, \boldsymbol{w}) = \frac{D_{\mathsf{LS}}}{D_{\mathsf{OS}}}$

Rapport de distances diamètre-angulaire

• Équation des lentilles : $\theta_{\rm S} = \theta_{\rm I} - \frac{2}{c^2} \frac{D_{\rm LS}}{D_{\rm OS} D_{\rm OL}} \nabla_{\theta} \phi(\theta_{\rm I})$

•
$$\nabla_{\boldsymbol{\theta}} \phi(\boldsymbol{\theta}_{\mathrm{I}}) = \sigma_0^2 D_{\mathrm{OL}} \boldsymbol{f}(\boldsymbol{\theta}_{\mathrm{I}}; \dots) \Rightarrow E(z_{\mathsf{L}}, z_{\mathsf{S}}, \Omega_{\mathsf{M0}}, \Omega_{\Lambda}, w) = 0$$

Test cosmologique

• Présence d'un système d'images multiples à z_{S1} : contrainte de $\theta_{l_2} - \theta_{l_1} = \sigma_0^2 E(z_{S1})[f(\theta_{l2}; \dots) - f(\theta_{l1}; \dots)]$

Test cosmologique

- Présence d'un système d'images multiples à z_{S1} : contrainte de $\theta_{l_2} - \theta_{l_1} = \sigma_0^2 E(z_{S1})[f(\theta_{l2}; \dots) - f(\theta_{l1}; \dots)]$
- Deux systèmes d'images multiples à z_{S1} et z_{S2} : contrainte de $\frac{\|\boldsymbol{\theta}_{l_1^2} - \boldsymbol{\theta}_{l_2^2}\|}{\|\boldsymbol{\theta}_{l_1^1} - \boldsymbol{\theta}_{l_2^1}\|} = \frac{E(z_{S2})}{E(z_{S1})} \frac{\|\boldsymbol{f}(\boldsymbol{\theta}_{l_1^2}; \dots) - \boldsymbol{f}(\boldsymbol{\theta}_{l_2^2}; \dots)\|}{\|\boldsymbol{f}(\boldsymbol{\theta}_{l_1^1}; \dots) - \boldsymbol{f}(\boldsymbol{\theta}_{l_2^1}; \dots)\|}$

Test cosmologique

- Présence d'un système d'images multiples à z_{S1} : contrainte de $\theta_{l_2} - \theta_{l_1} = \sigma_0^2 E(z_{S1})[f(\theta_{l2}; \dots) - f(\theta_{l1}; \dots)]$
- Deux systèmes d'images multiples à z_{S1} et z_{S2} : contrainte de $\frac{\|\boldsymbol{\theta}_{l_1^2} - \boldsymbol{\theta}_{l_2^2}\|}{\|\boldsymbol{\theta}_{l_1^1} - \boldsymbol{\theta}_{l_2^1}\|} = \frac{E(z_{S2})}{E(z_{S1})} \frac{\|\boldsymbol{f}(\boldsymbol{\theta}_{l_1^2}; \dots) - \boldsymbol{f}(\boldsymbol{\theta}_{l_2^2}; \dots)\|}{\|\boldsymbol{f}(\boldsymbol{\theta}_{l_1^1}; \dots) - \boldsymbol{f}(\boldsymbol{\theta}_{l_2^1}; \dots)\|}$

Variations de E avec la cosmologie

1 système d'images

Variations de E avec la cosmologie

Introduction Influence Simulations Applications Conclusion Table retour suivant écran quitter 12
Validité du test cosmologique

• Galaxie-lentille avec un système d'images multiples

$$\frac{\mathrm{d}\alpha}{\alpha} = 2\frac{\mathrm{d}\sigma_0}{\sigma_0} - 0,0086\frac{\mathrm{d}\theta_{\rm c}}{\theta_{\rm c}} + 0,50\frac{\mathrm{d}\theta_{\rm t}}{\theta_{\rm t}} - 0,50\frac{\mathrm{d}\theta_{\rm l}}{\theta_{\rm l}}$$
$$- 0.17\frac{\mathrm{d}z_{\rm L}}{z_{\rm L}} + 0.062\frac{\mathrm{d}z_{\rm S}}{z_{\rm S}} + 0.012\frac{\mathrm{d}\Omega_{\rm M0}}{\Omega_{\rm M0}} + 0.14\frac{\mathrm{d}\Omega_{\Lambda}}{\Omega_{\Lambda}}$$

 \Rightarrow contrainte de Ω_{Λ} si $\Delta \sigma \lesssim 15 \, \mathrm{km \, s^{-1}}$

Validité du test cosmologique

Galaxie-lentille avec un système d'images multiples

$$\frac{\mathrm{d}\alpha}{\alpha} = 2\frac{\mathrm{d}\sigma_0}{\sigma_0} - 0,0086\frac{\mathrm{d}\theta_{\rm c}}{\theta_{\rm c}} + 0,50\frac{\mathrm{d}\theta_{\rm t}}{\theta_{\rm t}} - 0,50\frac{\mathrm{d}\theta_{\rm l}}{\theta_{\rm l}}$$
$$- 0.17\frac{\mathrm{d}z_{\rm L}}{z_{\rm L}} + 0.062\frac{\mathrm{d}z_{\rm S}}{z_{\rm S}} + 0.012\frac{\mathrm{d}\Omega_{\rm M0}}{\Omega_{\rm M0}} + 0.14\frac{\mathrm{d}\Omega_{\Lambda}}{\Omega_{\Lambda}}$$

 \Rightarrow contrainte de Ω_{Λ} si $\Delta\sigma \lesssim 15\,{
m km\,s^{-1}}$

Amas-lentille avec deux systèmes d'images multiples

 $\begin{aligned} \frac{\mathrm{d}R_{12}}{R_{12}} &= 0.22 \frac{\mathrm{d}\theta_{\mathsf{c}}}{\theta_{\mathsf{c}}} + 0.11 \frac{\mathrm{d}\theta_{\mathsf{t}}}{\theta_{\mathsf{t}}} - 0.35 \frac{\mathrm{d}\theta_{I^{1}}}{\theta_{I^{1}}} - 0.018 \frac{\mathrm{d}\theta_{I^{2}}}{\theta_{I^{2}}} + \\ 0.92 \frac{\mathrm{d}z_{\mathsf{L}}}{z_{\mathsf{L}}} &- 0.99 \frac{\mathrm{d}z_{\mathsf{S}1}}{z_{\mathsf{S}1}} + 0.062 \frac{\mathrm{d}z_{\mathsf{S}2}}{z_{\mathsf{S}2}} + 0.034 \frac{\mathrm{d}\Omega_{\mathsf{M0}}}{\Omega_{\mathsf{M0}}} + 0.037 \frac{\mathrm{d}\Omega_{\Lambda}}{\Omega_{\Lambda}} \\ \Rightarrow \Omega_{\mathsf{M0}} &= 0, 30 \pm 0, 04 \text{ et } \Omega_{\Lambda} = 0, 70 \pm 0, 09 \end{aligned}$

Contraintes cosmologiques : simulations numériques

Golse, Kneib & Soucail (2002) *A&A* **387**, 788 Golse & Kneib (2002) *A&A* **390**, 821

Algorithme

- Génération des images gravitationnelles
 - ★ potentiel gravitationnel de l'amas
 - \star décalages spectraux z_{L} et z_{Si}
 - ★ position des sources
 - \star cosmologie arbitraire $(\Omega^0_{\rm M0},\Omega^0_{\Lambda})$ ou $(\Omega^0_{\rm M0},w^0)$

Algorithme

- Génération des images gravitationnelles
 - ★ potentiel gravitationnel de l'amas
 - \star décalages spectraux z_{L} et z_{Si}
 - ★ position des sources
 - \star cosmologie arbitraire $(\Omega^0_{\rm M0},\Omega^0_{\Lambda})$ ou $(\Omega^0_{\rm M0},w^0)$
- Optimisation du potentiel suivant la cosmologie

- Intérêt des modèles de masse pseudo-elliptiques
 - ★ description des amas réels
 - \star expressions analytiques \Rightarrow rapidité de calcul
- Cas circulaire : φ (ou à défaut α) et Σ sont analytiques
- ullet On introduit le paramètre ϵ dans arphi

$$\varphi_{\epsilon}(\boldsymbol{x}) = \varphi(\boldsymbol{x}_{\epsilon}), \text{ avec} \begin{cases} x_{1\epsilon} = \sqrt{1-\epsilon} x_{1} \\ x_{2\epsilon} = x_{2}/\sqrt{1-\epsilon} \\ x_{\epsilon} = \sqrt{x_{1\epsilon}^{2} + x_{2\epsilon}^{2}} \\ \phi_{\epsilon} = \arctan\left(x_{2\epsilon}/x_{1\epsilon}\right) \end{cases}$$

 $\begin{array}{l} \star \ \epsilon_{\varphi} \simeq \epsilon, \ \epsilon_{\Sigma} \simeq 2 \ \epsilon \\ \star \ \alpha, \ \kappa \ \text{et} \ \gamma \ \text{ont des expressions analytiques} \\ \kappa_{\epsilon}(\boldsymbol{x}) = \kappa(\boldsymbol{x}_{\epsilon}) + \epsilon \cos 2\phi_{\epsilon} \ \gamma(\boldsymbol{x}_{\epsilon}) \end{array}$

- Intérêt des modèles de masse pseudo-elliptiques
 - * description des amas réels
 - \star expressions analytiques \Rightarrow rapidité de calcul
- Cas circulaire : arphi (ou à défaut lpha) et Σ sont analytiques
- ullet On introduit le paramètre ϵ dans arphi

$$\varphi_{\epsilon}(\boldsymbol{x}) = \varphi(\boldsymbol{x}_{\epsilon}), \text{ avec} \begin{cases} x_{1\epsilon} = \sqrt{1-\epsilon} x_{1} \\ x_{2\epsilon} = x_{2}/\sqrt{1-\epsilon} \\ x_{\epsilon} = \sqrt{x_{1\epsilon}^{2} + x_{2\epsilon}^{2}} \\ \phi_{\epsilon} = \arctan\left(x_{2\epsilon}/x_{1\epsilon}\right) \end{cases}$$

* $\epsilon_{\varphi} \simeq \epsilon, \ \epsilon_{\Sigma} \simeq 2 \epsilon$ * $\alpha, \ \kappa \text{ et } \gamma \text{ ont des expressions analytiques}$ $\kappa_{\epsilon}(\boldsymbol{x}) = \kappa(\boldsymbol{x}_{\epsilon}) + \epsilon \cos 2\phi_{\epsilon} \gamma(\boldsymbol{x}_{\epsilon})$

- Intérêt des modèles de masse pseudo-elliptiques
 - * description des amas réels
 - \star expressions analytiques \Rightarrow rapidité de calcul
- Cas circulaire : φ (ou à défaut α) et Σ sont analytiques

$$\varphi_{\epsilon}(\boldsymbol{x}) = \varphi(\boldsymbol{x}_{\epsilon}), \text{ avec} \begin{cases} x_{1\epsilon} = \sqrt{1-\epsilon} x_{1} \\ x_{2\epsilon} = x_{2}/\sqrt{1-\epsilon} \\ x_{\epsilon} = \sqrt{x_{1\epsilon}^{2} + x_{2\epsilon}^{2}} \\ \phi_{\epsilon} = \arctan\left(x_{2\epsilon}/x_{1\epsilon}\right) \end{cases}$$

 $\begin{array}{l} \star \ \epsilon_{\varphi} \simeq \epsilon, \ \epsilon_{\Sigma} \simeq 2 \ \epsilon \\ \star \ \alpha, \ \kappa \ \text{et} \ \gamma \ \text{ont des expressions analytiques} \\ \kappa_{\epsilon}(\boldsymbol{x}) = \kappa(\boldsymbol{x}_{\epsilon}) + \epsilon \cos 2\phi_{\epsilon} \ \gamma(\boldsymbol{x}_{\epsilon}) \end{array}$

- Intérêt des modèles de masse pseudo-elliptiques
 - ★ description des amas réels
 - \star expressions analytiques \Rightarrow rapidité de calcul
- Cas circulaire : φ (ou à défaut α) et Σ sont analytiques
- On introduit le paramètre ϵ dans φ

$$\varphi_{\epsilon}(\boldsymbol{x}) = \varphi(\boldsymbol{x}_{\epsilon}), \text{ avec} \begin{cases} x_{1\epsilon} = \sqrt{1-\epsilon} x_{1} \\ x_{2\epsilon} = x_{2}/\sqrt{1-\epsilon} \\ x_{\epsilon} = \sqrt{x_{1\epsilon}^{2} + x_{2\epsilon}^{2}} \\ \phi_{\epsilon} = \arctan\left(x_{2\epsilon}/x_{1\epsilon}\right) \end{cases}$$

 $\begin{array}{l} \star \ \epsilon_{\varphi} \simeq \epsilon, \ \epsilon_{\Sigma} \simeq 2 \ \epsilon \\ \star \ \alpha, \ \kappa \ \text{et} \ \gamma \ \text{ont des expressions analytiques} \\ \kappa_{\epsilon}(\boldsymbol{x}) = \kappa(\boldsymbol{x}_{\epsilon}) + \epsilon \cos 2\phi_{\epsilon} \ \gamma(\boldsymbol{x}_{\epsilon}) \end{array}$

• Application au profil NFW \Rightarrow valide pour $\epsilon \leq 0,25$

Cas d'un halo simple

- Simulation numérique
 - ★ profil NFW

*
$$z_{\rm L} = 0, 3$$
, $z_{\rm S1} = 0, 6$,

 $z_{S2} = 1, 0, z_{S3} = 4, 0$

$$\star~(\Omega^0_{
m M0},\Omega^0_\Lambda)=(0,3;0,7)$$
, $w^0=-1$

Cas d'un halo simple

- Simulation numérique
 - * profil NFW * $z_L = 0, 3, z_{S1} = 0, 6,$ $z_{S2} = 1, 0, z_{S3} = 4, 0$ * $(\Omega_{M0}^0, \Omega_{\Lambda}^0) = (0, 3; 0, 7), w^0 = -1$

Ajustement des paramètres

Fitre Introduction Influence Simulations Applications Conclusion Table retour suivant écran quitter 19

 Ajustement par un profil différent : utiliser un profil à cœur plat

 Ajustement par un profil différent : utiliser un profil à cœur plat

 Influence du nombre de systèmes d'images multiples

2 systèmes

 Ajustement par un profil différent : utiliser un profil à cœur plat

 Influence du nombre de systèmes d'images multiples

3 systèmes

 Ajustement par un profil différent : utiliser un profil à cœur plat

 Influence du nombre de systèmes d'images multiples

4 systèmes

Potentiels complexes

• Influence des galaxies individuelles

Potentiels complexes

• Influence des galaxies individuelles

• Potentiels bimodaux

Application à des amas observés

AC114 : présentation

• $z_{\mathsf{L}} = 0,312$

AC114 : présentation

Introduction Influence Simulations Applications Conclusion Table retour suivant écran quitter 23

AC114 : présentation

AC114 : procédure d'optimisation

- Modélisation de la distribution de masse :
 - ★ 1 halo principal de matière noire de type PIEMD
 ★ 2 halos secondaires à 70" et 120" du centre
 ★ contribution des galaxies centrales les plus brillantes
- Procédure d'optimisation
 - détermination des paramètres fixes (en variant la cosmologie)
 - ★ ajustement des paramètres libres (σ_0 et θ_c du halo principal) pour chaque cosmologie

AC114 : procédure d'optimisation

• Modélisation de la distribution de masse :

★ 1 halo principal de matière noire de type PIEMD
★ 2 halos secondaires à 70" et 120" du centre
★ contribution des galaxies centrales les plus brillantes

Procédure d'optimisation

AC114 : procédure d'optimisation

- Modélisation de la distribution de masse :
 - ★ 1 halo principal de matière noire de type PIEMD
 ★ 2 halos secondaires à 70" et 120" du centre
 ★ contribution des galaxies centrales les plus brillantes
- Procédure d'optimisation
 - détermination des paramètres fixes (en variant la cosmologie)
 - ★ ajustement des paramètres libres (σ_0 et θ_c du halo principal) pour chaque cosmologie

AC 114 : contraintes en $(\Omega_{M0}, \Omega_{\Lambda})$

• $z_{L} = 0,176$

itre Introduction Influence Simulations Applications Conclusion Table retour suivant écran quitter 26

itre Introduction Influence Simulations Applications Conclusion Table retour suivant écran quitter 26

Abell 2218 : contraintes en $(\Omega_{M0}, \Omega_{\Lambda})$

• Univers de courbure quelconque * $0 \le \Omega_{M0} \le 0,54$ * $0,01 \le \Omega_{M0} \le 0,22$ * $0,78 \le \Omega_{\Lambda} \le 0,99$
Abell 2218 : contraintes en (Ω_{M0}, w)

• Univers plat $\star 0,01 \le \Omega_{M0} \le 0,37$ $\star 0,63 \le \Omega_{Q0} \le 0,99$ $\star w \le -0,80$

Abell 2218 : distribution de masse

- Halo principal : $\sigma_0 = 1039^{+76}_{-20} \text{ km s}^{-1}$, $r_c = 61, 6^{+4,3}_{-2,0} \text{ kpc}$.
- Halo étendu pour les galaxies (typiquement $40\,{\rm kpc}$), $M/L \propto L^{0,4}$.
- Composantes de masse

élément	masse $(10^{14} M_{\odot})$	fraction de masse
halo principal	3,053	91,1 %
halo secondaire	0,172	5,1 %
galaxies	0,128	3,8 %
total	3,353	100 %

Test cosmologique

Méthode mise en œuvre

- * mesure géométrique *indépendante* de la cosmologie
- ★ dégénérescence propre
- ★ effets distribution de masse / cosmologie séparés
- ★ possibilité de combiner les contraintes de plusieurs amas

• Avenir

- ★ autres amas : A 370, A 383, MS 2137, MS 0440, A 1689
- ★ proposition au Keck pour 5 autres systèmes dans A 2218
- ★ relevé MACS d'amas lumineux en X
- ★ instrument VIMOS/IFU sur le VLT : spectroscopie

Test cosmologique

- Méthode mise en œuvre
 - * mesure géométrique *indépendante* de la cosmologie
 - ★ dégénérescence propre
 - ★ effets distribution de masse / cosmologie séparés
 - ★ possibilité de combiner les contraintes de plusieurs amas

Avenir

- ★ autres amas : A 370, A 383, MS 2137, MS 0440, A 1689
- ★ proposition au Keck pour 5 autres systèmes dans A 2218
- ★ relevé MACS d'amas lumineux en X
- ★ instrument VIMOS/IFU sur le VLT : spectroscopie

Test cosmologique

- Méthode mise en œuvre
 - * mesure géométrique *indépendante* de la cosmologie
 - ★ dégénérescence propre
 - ★ effets distribution de masse / cosmologie séparés
 - ★ possibilité de combiner les contraintes de plusieurs amas

• Avenir

- ★ autres amas : A 370, A 383, MS 2137, MS 0440, A 1689
- * proposition au Keck pour 5 autres systèmes dans A 2218
- ★ relevé MACS d'amas lumineux en X
- ★ instrument VIMOS/IFU sur le VLT : spectroscopie

Plan	1
Introduction	. 2
Paramètres cosmologiques	3
Contraintes cosmologiques actuelles	4
Amas de galaxies : généralités	5
Amas de galaxies : profil de masse	6
Lentilles gravitationnelles	7
Amas-lentilles	8
Influence de la cosmologie sur la formation des images	. 9
Rapport de distances diamètre-angulaire	. 10
Test cosmologique	. 11
Variations de E avec la cosmologie \ldots	.12
Validité du test cosmologique	. 13
Contraintes cosmologiques : simulations numériques	14
Algorithme	. 15
Modèles de Lentilles Pseudo-Elliptiques (1)	.16
Modèles de Lentilles Pseudo-Elliptiques (2)	.17
Cas d'un halo simple	. 18
Ajustement des paramètres	. 19
re Introduction Influence Simulations Applications Conclusion Lable retour suivant écran quitter	- 32

Profil différent/Nombre de systèmes	. 20
Potentiels complexes	. 21
Application à des amas observés	. 22
AC 114 : présentation	23
AC 114 : procédure d'optimisation	24
AC 114 : contraintes en $(\Omega_{M0}, \Omega_{\Lambda})$	25
Abell 2218 : présentation	26
Abell 2218 : contraintes en $(\Omega_{ m M0},\Omega_{\Lambda})$	27
Abell 2218 : contraintes en $(\Omega_{ m M0},w)$. 28
Abell 2218 : distribution de masse	. 29
Conclusion	. 30
Test cosmologique	. 31
Table des matières	. 32