
HAL Id: tel-00002175
https://theses.hal.science/tel-00002175

Submitted on 19 Dec 2002

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Précession de l’aimantation en géométrie confinée:
aspects physiques et numériques

Gonçalo Albuquerque

To cite this version:
Gonçalo Albuquerque. Précession de l’aimantation en géométrie confinée: aspects physiques et
numériques. Modélisation et simulation. Université Paris Sud - Paris XI, 2002. Français. �NNT :
�. �tel-00002175�

https://theses.hal.science/tel-00002175
https://hal.archives-ouvertes.fr


No D’ORDRE : 6948

UNIVERSITÉ PARIS XI
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ASPECTS PHYSIQUES ET NUMÉRIQUES
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Introduction

Magnetism owes much to the conceptual breakthrough offered by quantum mechanics

(for a modern approach see [1]): The notion of spin and spin dynamics. In the classical

limit, the 1935 paper of Landau and Lifshitz [2] constitutes an unavoidable reference.

Gilbert [3] produced a complementary view to spin motion based on the interplay between

conservative “gyrotropic” precession around the spins’ effective field and a dissipative

(viscous) damping associated with this movement. This theoretical approach is still widely

used today [4]. In the continuation of these pioneering theoretical works, Kikuchi [5] was

the first to address the question of the minimum switching time when magnetisation motion

is essentially governed by precession.

If the development of thin (and very thin) films provided a propitious ground for the de-

velopment of the theory of domain wall dynamics (see, for instance, [6]), the magnetic sys-

tems under study could still be considered as essentially unbounded and the relevant time

scales associated with magnetisation motion were clearly far greater than the nanosecond.

Only recently have experimental techniques allowed to probe magnetisation dynamics be-

low the nanosecond [7]. As an immediate consequence, research efforts have concentrated

on the achievement of magnetisation switching in thin films using extremely short field

pulses [8, 9], with the purpose of fully exploiting the precessional nature of magnetisation

motion. The pace was clearly set: Understand magnetisation dynamics on times scales

approaching the characteristic precessional frequencies of the system under study and on

spatial scales which are those of micromagnetics [10]. Such are also the requirements of

future magnetic recording and magnetoelectronic devices [11, 12, 13].

In this respect, numerical micromagnetic simulations have lead the way (see [4]) and

have provided for a considerable insight into the mechanisms of magnetisation switching in

elements of reduced dimensions. Validating numerical predictions leads us to the limits of

available experimental techniques and a huge effort is being dedicated to their development,
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with the objective of allowing for a time-resolved monitoring of magnetisation motion in

submicron-sized platelets [14, 15, 16, 17, 18].

This is the context of the present work: The understanding, from a numerical point of

view, of the magnetisation mechanisms leading to a controlled and coherent fast preces-

sional switching in magnetic elements of ever decreasing lateral dimensions.

Thesis’ outline

Chapter 1 starts with a general derivation of the gyromagnetic equation of motion from

quantum-mechanical principles. There follows a derivation of Brown’s and the Landau-

Lifshitz-Gilbert (LLG) equations from a general variational approach, ending with the

proposal of a dimensionless system of units and the ensuing rewriting, in an invariant

form, of the basic equations of micromagnetism. Chapter 2 deals with precessional dy-

namics in the macrospin (or single spin) approximation in a thin film platelet. A thorough

analysis of the switching phase diagram is given, a particular emphasis being laid on the

determination of ballistic trajectories, corresponding to ringing-free switching events in a

minimal time. Complexities arising from considering the magnetisation spatial degrees of

freedom are introduced in Chapter 3. There, besides establishing the remanent energy

state hierarchy in 500×250 nm2 platelets as a function of thickness, transverse oscillations

numerical experiments are performed (no magnetisation switching is yet involved). They

aim at quantitatively establish the degree of non-macrospin like behaviour in inhomoge-

neous magnetisation distributions. This quantitative measure, based on the recalculation

of the phenomenological damping parameter, is further discussed in the Appendix A.

Chapter 4 constitutes the backbone of the present work. There, numerical micromagnetic

results pertaining to the precessional magnetisation switching of submicron-sized platelets

are given. Emphasis is now put on the achievement of a quasi-coherent magnetisation

motion, possibly mimicking the macrospin ballistic trajectories, and allowing for minimal

post-switching oscillations below the nanosecond time scale. The detailed characteristics

of optimised switching events are presented. Finalising the main text, Chapter 5 proposes

a brief description and analysis of the impact of real world parameters in the magneti-

sation switching mechanisms presented in Chapter 4. We divide our attention between

the effects of edge roughness and the influence of stray field coupling originating from an

Artificial AntiFerromagnetic (AAF) stack on a soft (free) magnetic layer. In addition, the
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effects of structural disorder in both the AAF stack and the free layer are considered. The

Appendix A proposes a self-contained description of the numerical procedures employed in

this work. It focuses on the innovative contributions developed during this thesis, namely

the damping parameter recalculation as a means of quantifying time domain errors and the

development of an optimised semi-implicit Crank-Nicolson numerical integration scheme

for the LLG equation. Finally, Appendix B discusses some issues arising from the de-

tailed solution of the µMAG Standard Problem No. 4, in particular the effects of spatial

discretisation on the dynamics of small scale magnetisation distributions.
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Chapter 1

Equations of Magnetisation

Motion

This introductory chapter aims at presenting the ensemble of the equations needed in the

following discussions, laying emphasis on the intimate links between quantum-mechanical

concepts and the parameters employed in applied magnetism. The apparently irreconcil-

able views of first principles theoretical developments and the Lagrangian formulation of

the equations of magnetisation motion will be discussed, highlighting both their strengths

and shortcomings. The analysis starts by considering an ab initio formulation in deriving

the gyromagnetic equation for a single spin, proceeding next to tackle the questions raised

by the introduction of spatial degrees of freedom, which leads us to the development of a

unified, and self-contained, three-dimensional variational approach to the derivation of the

general form of the equations of motion. It immediately allows for the deduction of the

well-known Brown’s equations, including en passant general energy surface contributions

and the underlying boundary conditions arising from volume exchange interactions. The

questions raised by addressing the kinematics of magnetisation motion are analysed in

some detail, in particular when considering a fully Lagrangian derivation of the equations

of magnetisation motion. Damping is next introduced in a strictly phenomenological way,

leading to the well-known Landau-Lifshitz-Gilbert equation of magnetisation motion. In

closing this chapter, a tentative working solution to the everlasting question of units in

magnetism (and inevitably in micromagnetism) is outlined, leading to the proposal of a

set of reduced (dimensionless) units. A common form of the basic equations of motion in

both the CGS and SI systems is thus arrived at.
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6 CHAPTER 1. EQUATIONS OF MAGNETISATION MOTION

1.1 Quantum-Mechanical Concepts

In the same manner as a magnetic moment M(a) is associated with the electron’s orbital

angular momentum L, an intrinsic magnetic moment is assumed to be associated with the

electron’s spin S [1]. This relation is expressed as

M = γ S , (1.1)

where γ, the gyromagnetic ratio, is given by

γ =
gµB

h̄
< 0 . (1.2)

In Eq. (1.2), g is the so-called gyromagnetic splitting factor, or Landé factor, and h̄ is

Plank’s constant. Owing to the definitions adopted above the Bohr magneton µB =

qeh̄/2me (with qe and me the charge and mass of the electron, respectively) is logically

negative.

In the most general case, the electron’s total angular momentum J = L+S must be used

when determining M, and Eq. (1.1) should be changed accordingly. From the quantum-

mechanical theory of angular momentum one may then obtain a general expression for the

Landé factor, namely

g =
3
2

+
S(S + 1) − L(L + 1)

2J(J + 1)
. (1.3)

Disregarding all orbital contributions to the total angular momentum (L = 0, J = S) yields

g = 2, while for a spinless particle (S = 0, J = L) the Landé factor is equal to 1. In the most

common ferromagnetic metals, orbital contributions to the magnetic moment are found to

be actually rather small. Recent X-ray Magnetic Circular Dichroism (XMCD) data have

provided for quantitative values of the orbital to spin magnetic moment ratios [19]. For

both bcc Fe and hcp Co these values do not exceed 10%. Here, Eq. (1.1), with g = 2,

will therefore be assumed to be the basic relation connecting magnetic moment to angular

momentum.

The link between quantum and classical mechanics is provided by the time evolution

of the mean value of quantum-mechanical operators associated with measurable physical

quantities. Such operators are called observables. Given an arbitrary observable A, its

(a)A quantum-mechanical vector operator shall be represented as A in contrast with the corresponding

classical quantity A (respectively A and A for scalars).
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mean value 〈A〉 evolves in time according to the Schrödinger equation

d

dt
〈A〉 =

1
ıh̄

〈[A, H]〉 +
〈

∂A

∂t

〉
, (1.4)

where H is the Hamiltonian operator.

It is now possible to determine the time evolution of the mean value of a magnetic

moment placed in an arbitrary external magnetic field. Since M does not explicitly depends

on time one may write

ıh̄
d

dt
〈M〉 = 〈[M, H]〉 , (1.5)

with H = −M · B. It is worth noting that there is no kinetic term in the Hamiltonian

associated with a magnetic moment. This simply reflects the fact that spin, viewed as

an angular momentum, has no classical analogue, i.e. it is not derived from any position

variable. The implications of this fundamental quantum-mechanical property will be more

amply discussed in Sect. 1.2.2.

Explicitly expanding the x component of the commutator above, and taking into ac-

count the fact that the magnetic field B is a classical quantity, yields

[Mx, H] = −γ2 [Sx, SxBx + SyBy + SzBz]

= −γ2By [Sx, Sy] − γ2Bz [Sx, Sz] .
(1.6)

Since S is an angular momentum operator it obeys the usual commutation rules

[Sx, Sy] = ıh̄Sz ,

[Sy, Sz] = ıh̄Sx ,

[Sz, Sx] = ıh̄Sy .

(1.7)

By substituting Eq. (1.7) into Eq. (1.6) one obtains

[Mx, H] = ıh̄γ2 (BzSy − BySz) . (1.8)

Cyclic permutation of the equation above allows to write

d

dt
〈M〉 = γ (〈M〉 × B) . (1.9)

The classical equivalent of Eq. (1.9) can be immediately written in terms of the mag-

netisation M, simply defined as being the magnetic moment. Using the SI system of units,

with B = µ0H, yields
dM
dt

= µ0γ (M × H) . (1.10)
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H || ω

M
dM/dt

Figure 1.1: Precessional motion of magnetisation.

It proves altogether more convenient to define a gyromagnetic constant γ0 as

γ0 = −µ0γ > 0 , (1.11)

and write the equation governing magnetisation motion as

dM
dt

= −γ0 (M × H) . (1.12)

Assuming the applied magnetic field to be time independent, multiplying Eq. (1.12)

successively by M and H leads to

d

dt

(
M2

)
= 0 and

d

dt
(M · H) = 0 . (1.13)

During motion both the modulus of the magnetisation vector and the angle between

the magnetic field and the magnetisation remain constant. Consequently the energy

−µ0 (M · H) remains unchanged. More generally, for a time dependent magnetic field,

Eq. (1.12) can always be written as

dM
dt

= − (M × ω) , (1.14)

with

ω = γ0H , (1.15)

the angular velocity vector. Equation (1.14) simply describes an instantaneous precessional

motion of the magnetisation vector around ω, as sketched in Fig. 1.1, i.e. dM/dt lies

continuously in a plane perpendicular to ω.
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1.2 Micromagnetics

Although the basic precessional nature of magnetisation motion could have been intro-

duced without calling upon quantum mechanics, the analysis of the preceding section has

the merit of being a self-contained approach to the derivation of Eq. (1.12), obtaining

en passant the definition of the gyromagnetic constant γ0. Unfortunately, if one’s goals

extend beyond the (almost) purely academic problem of describing the time evolution of

a single magnetic moment under the action of an external magnetic field, fully ab ini-

tio methods soon reveal their limitations. In particular, the description of the intricacies

of spatial magnetisation distributions in ferromagnetic materials is clearly unattainable

if relying exclusively on such methods. The problem is not so much the inadequacy of

first principles theoretical formulations but the huge number of individual magnetic mo-

ments to be dealt with in practice. It appears clear that a continuous representation of

magnetisation must be sought for.

This is the aim of a classical theory of ferromagnetic materials based on a phenomeno-

logical description of magnetisation direction, and ultimately magnetisation motion, called

micromagnetics [10]. Magnetisation is here represented, in both space and time, by a con-

tinuous vector field M(r, t) = Msm(r, t), of constant magnitude Ms, which should now

be understood as a magnetic moment per unit volume. This imposed constraint on the

norm of M (or m) holds valid in the zero temperature limit and as long as one avoids the

description of micromagnetic structures such as Bloch points.

Spatial distributions of magnetisation introduce a new degree of complexity in the

derivation of the equations of magnetisation motion. Useful analogies can be drawn

from well-established variational principles in classical mechanics. The importance of such

analogies is all the most relevant since the derivation of the equations of motion in terms

of variational principles is the route that must be followed when trying to describe non-

mechanical systems within the mathematical framework of analytical classical mechanics.

This statement provides the basic motivation for the digression which is about to follow.

1.2.1 Variational Principles for Continuous Systems

General expressions for the equations of motion of mechanical systems can be obtained

from a variational principle known as Hamilton’s principle [20].
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The motion of the system from time t1 to time t2 is such that the action integral

I =
∫ t2

t1

L dt , (1.16)

where L is the Lagrangian functional, has a stationary value(b).

For conservative mechanical systems L can be simply defined as the excess of kinetic over

potential energy. The above formulation is such that the explicit functional dependence

of L on the system’s generalised coordinates, i.e the system’s degrees of freedom, need not

be specified.

Consider an arbitrary continuous vector field defined in three-dimensional space, say

m(r, t), and a Lagrangian functional of the form

L =
∫

Ω
L dr +

∫
Γ
E ′ dr . (1.17)

The second integral above accounts for potential energy contributions linked to the surface

Γ, enclosing the volume Ω, whereas the first contains volume terms of both kinetic and

potential origin. In the most general case, L, besides being a function of m and ṁ(c), also

involves the spatial derivatives of m, namely ∇m(d). Without loss of generality, E ′ will

be assumed to be a sole function of m, a restriction compatible with micromagnetics. Of

course, both L and E ′ might also well be explicit functions of r and t. Thus the Lagrangian

densities can be formally written as

L = L(m, ṁ, ∇m, r, t) and E ′ = E ′(m, r, t) . (1.18)

Hamilton’s principle can be restated by saying that the system’s motion is such that the

variation of the action integral is zero for fixed t1 and t2, i.e.

δI = δ

∫ t2

t1

(∫
Ω
L dr +

∫
Γ
E ′ dr

)
dt =

∫ t2

t1

(∫
Ω

δL dr +
∫

Γ
δE ′ dr

)
dt = 0 , (1.19)

δm(r, t1) = δm(r, t2) = 0 . (1.20)

It should be stressed that no restrictions are imposed upon δm on the surface Γ, or in the

volume Ω itself, for times other than t1 and t2. Under this limitation, the variation δm is

therefore to be treated as arbitrary.
(b)For a comprehensive discussion about the limits of applicability of Hamilton’s principle the reader may

profitably refer to Lanczos [21].
(c)The superscript dot notation stands for a partial time derivative.
(d)∇m ≡ ∂mi/∂rj is a second rank tensor.
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The calculus of variations [21] provides for the mathematical tools needed to tackle the

problem enunciated above. Carrying out the variations δL and δE ′ yields

δI =
∫ t2

t1

∫
Ω

[
∂L
∂m

· δm +
∂L

∂(∇m)
· δ(∇m) +

∂L
∂ṁ

· δṁ
]

dr dt

+
∫ t2

t1

∫
Γ

(
∂E ′

∂m
· δm

)
dr dt . (1.21)

Since the operator δ commutes with both ∇ and d/dt, the following relations hold

∂L
∂(∇m)

· δ(∇m) = ∇ ·
[

∂L
∂(∇m)

· δm
]
−

[
∇ · ∂L

∂(∇m)

]
· δm , (1.22)

∂L
∂ṁ

· δṁ =
d

dt

(
∂L
∂ṁ

· δm
)
−

(
d

dt

∂L
∂ṁ

)
· δm . (1.23)

Because δm vanishes at the integration endpoints t1 and t2

∫ t2

t1

d

dt

(
∂L
∂ṁ

· δm
)

dt = 0 . (1.24)

Making use of the divergence theorem of vectorial calculus

∫
Ω

∇ ·
[

∂L
∂(∇m)

· δm
]

dr =
∫

Γ

{[
∂L

∂(∇m)
· δm

]
· n̂

}
dr , (1.25)

where n̂ stands for the unit vector normal to the surface Γ, Eq. (1.21) can be written as

δI =
∫ t2

t1

∫
Ω

{[
∂L
∂m

− ∇ · ∂L
∂(∇m)

− d

dt

∂L
∂ṁ

]
· δm

}
dr dt

+
∫ t2

t1

∫
Γ

{[
∂E ′

∂m
+

∂L
∂(∇m)

· n̂
]
· δm

}
dr dt . (1.26)

By the so-called fundamental lemma of the calculus of variations, the arbitrary nature of

δm implies the vanishing of the expressions inside square brackets

∂L
∂m

− ∇ · ∂L
∂(∇m)

− d

dt

∂L
∂ṁ

= 0 in the volume , (1.27)

∂E ′

∂m
+

∂L
∂(∇m)

· n̂ = 0 on the surface . (1.28)

Introducing the notion of functional derivative

δ

δm
≡ ∂

∂m
− ∇ · ∂

∂(∇m)
, (1.29)



12 CHAPTER 1. EQUATIONS OF MAGNETISATION MOTION

Eqs. (1.27) and (1.28) can be put in a notation more closely resembling the Euler-Lagrange

equations for discrete systems

δL
δm

− d

dt

∂L
∂ṁ

= 0 in the volume , (1.30)

∂E ′

∂m
+

∂L
∂(∇m)

· n̂ = 0 on the surface . (1.31)

A necessary condition for deriving the equations above was the arbitrary nature of the

variation δm. Generally speaking mechanical as well as non-mechanical systems evolve

in time subjected to constraints. As could be hinted from the discussion of Sect. 1.1,

and the introductory remarks of Sect. 1.2, one is interested in a particular kinematic

constraint, namely that the vector field m(r, t) should preserve a constant magnitude.

Such a constraint can be conveniently expressed in terms of the variation of m as

m · δm = 0 . (1.32)

The method of Lagrange undetermined multipliers [20] provides for an elegant way of han-

dling kinematic constraints of the form above. The equations of motion (1.30) and (1.31)

hold true provided the additional term λm, where λ is an unknown scalar quantity, is

added to the left-hand side of Eq. (1.30). Therefore, the equations of motion for a contin-

uous system associated with an arbitrary vector field m(r, t) of constant magnitude, and

described by the Lagrangian functional defined by Eqs. (1.17) and (1.18), can be written

as

δL
δm

− d

dt

∂L
∂ṁ

+ λm = 0 in the volume , (1.33)

∂E ′

∂m
+

∂L
∂(∇m)

· n̂ = 0 on the surface . (1.34)

1.2.2 Brown’s and Gyromagnetic Equations

The equations of motion (1.33) and (1.34) clearly hold true in micromagnetics. Further

insight can be gained about their nature without the need to explicitly specify the func-

tional dependence of the Lagrangian densities L and E ′. Consider the static equilibrium
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limit of such equations, i.e.

δE
δm

+ λm = 0 in the volume , (1.35)

∂E ′

∂m
+

∂E
∂(∇m)

· n̂ = 0 on the surface , (1.36)

where E represents the volume potential energy density of the system, henceforth simply

called volume energy density. As anticipated, the static equilibrium equations above can

be obtained by equating to zero the variation of the total energy, i.e. δE = 0, with

E =
∫

Ω
E dr +

∫
Γ
E ′ dr . (1.37)

Multiplying the volume equation (1.35) by m× yields

m × δE
δm

= 0 in the volume . (1.38)

Using the SI system of units, a vector quantity having the dimensions of a magnetic field

can be defined from the functional derivative of the volume energy density as

Heff = − 1
µ0Ms

δE
δm

, (1.39)

and shall be called the effective field. The static equilibrium equations appear now as a

torque condition on M plus a boundary condition, namely

M × Heff = 0 in the volume , (1.40)

∂E ′

∂m
+

∂E
∂(∇m)

· n̂ = 0 on the surface . (1.41)

Within the framework of micromagnetics the equations above are usually called Brown’s

equations. It ought to be emphasised that these equations were derived without any

knowledge of the physical origins of energy terms. In particular, the boundary condition

linked to energy contributions explicitly dependent on ∇m is seen to ensue directly from

general variational principles, without the need for the usual cumbersome variations of

explicit energy functionals [10, 22].

The basic precessional nature of magnetisation motion around some instantaneous axis

of rotation directed along ω follows directly from the kinematical constraint m · δm = 0.

Efforts made in deriving the general form of the equations of motion from a variational
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Figure 1.2: Coordinate axes used when representing the precessional motion of m.

principle would intuitively be anticipated to lead to the equations of magnetisation mo-

tion. Unfortunately such will not be the case since a kinetic energy density functional

cannot be derived from classical physical principles. Quantum mechanics is of no help

either since no kinetic energy is associated with the motion of the magnetic moment M

(see Eq. (1.5)). When dealing with this problem, the symmetric top is usually taken as

the classical analogue to the intrinsic magnetic moment associated with spin. Correct

expressions for the kinetic energy term can indeed be obtained by considering the most

general movement of a top, arbitrarily imposing, however, that motion other than rota-

tion about its symmetry axis yields no contribution to the kinetic energy. This was the

approach followed by Brown in his seminal book [10], but the reader is instantly warned

about the classically impossible limit of such procedure. On the same question Döring [23]

was even more blunt. A suitable expression for this kinetic term was simply presented

with no justifications whatsoever. It reads

T = −µ0Ms

γ0
φ̇ cos θ , (1.42)

with the angles φ and θ being those in Fig. 1.2.

Between a poor analogy and a sound postulate the choice will be made for the lat-

ter. The gyromagnetic equation (1.12) will be assumed to hold valid when the external

magnetic field is replaced by the effective magnetic field Heff , i.e., instantaneously, mag-

netisation will precess around Heff at an angular velocity ω = γ0Heff . Taken in connection

with Brown’s equations, this axiom foresees that the equations of magnetisation motion
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(gyromagnetic equations) should be written as

∂M
∂t

= −γ0 (M × Heff) in the volume , (1.43)

∂E ′

∂m
+

∂E
∂(∇m)

· n̂ = 0 on the surface . (1.44)

The boundary condition above holds true in actual motion just as in equilibrium configu-

rations, a fact all too often disregarded in numerical micromagnetics.

1.2.3 The Landau-Lifshitz-Gilbert Equation

A damping term allows a precessing magnetisation vector to lose energy and approach its

static equilibrium direction along Heff . By far, the simplest way of introducing a damping

or dissipation term in the gyromagnetic equation consists in adding to the effective field

Heff an additional contribution of the form

− α

γ0Ms

∂M
∂t

, (1.45)

where α is a dimensionless constant. This additional term is strictly phenomenological

since it is not derived from any energy transfer mechanism or model. Inserting Eq. (1.45)

in Eq. (1.43) yields

∂M
∂t

= −γ0 (M × Heff) +
α

Ms

(
M × ∂M

∂t

)
. (1.46)

This form of the equation is due to Gilbert [3]. It can be shown to be equivalent to the

older formulation due to Landau and Lifshitz [2]. Simply applying M× to both sides of

Eq. (1.46) yields

M × ∂M
∂t

= −γ0M × (M × Heff) − αMs
∂M
∂t

. (1.47)

Substituting the right-hand side of this equation for M × ∂M/∂t in Eq. (1.46), and rear-

ranging, leads to

∂M
∂t

= −γ′
0 (M × Heff) − λ [M × (M × Heff)] , (1.48)

with

γ′
0 =

γ0

1 + α2
and λ =

α

1 + α2

γ0

Ms
. (1.49)

This is the older form of Landau and Lifshitz [2]. Presenting the set of equations above

in the geometrical form of Eq. (1.48), but using the Gilbert damping constant α and the
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gyromagnetic constant γ0, the usually designated Landau-Lifshitz-Gilbert (LLG) equation

of magnetisation motion is obtained, namely

(
1 + α2

) ∂M
∂t

= −γ0 (M × Heff) − γ0α

Ms
[M × (M × Heff)] . (1.50)

As mentioned above magnetisation motion towards Heff is associated with a change

in energy. The variational techniques employed in Sect. 1.2.1 allow for the derivation of

a closed form expression of the energy dissipation rate, i.e. the time derivative of the

system’s total energy

dE

dt
=

∫
Ω

[
∂E
∂m

· ∂m
∂t

+
∂E

∂(∇m)
· ∂

∂t
(∇m) +

∂E
∂t

]
dr +

∫
Γ

(
∂E ′

∂m
· ∂m

∂t
+

∂E ′

∂t

)
dr .

(1.51)

Making use of the boundary condition (1.44)(e), the equation above can be simply written

as

dE

dt
=

∫
Ω

{
∂E
∂m

· ∂m
∂t

−
[
∇ · ∂E

∂(∇m)

]
· ∂m

∂t
+

∂E
∂t

}
dr +

∫
Γ

∂E ′

∂t
dr

=
∫

Ω

(
δE
δm

· ∂m
∂t

+
∂E
∂t

)
dr +

∫
Γ

∂E ′

∂t
dr .

(1.52)

In the important limiting situation where none of the energy densities explicitly depend on

time, the equation above reduces to

dE

dt
=

∫
Ω

δE
δm

· ∂m
∂t

dr . (1.53)

This equation can be rewritten by using the Gilbert form of the LLG equation. Multiplying

Eq. (1.46) respectively by Heff and ∂M/∂t yields

Heff · ∂M
∂t

= − α

Ms

∂M
∂t

· (M × Heff) and
∂M
∂t

· (M × Heff) = − 1
γ0

(
∂M
∂t

)2

. (1.54)

Combining the expressions above leads to

Heff · ∂M
∂t

=
α

γ0Ms

(
∂M
∂t

)2

. (1.55)

Being derived from the LLG equation the relation above holds valid at every point in space

and at every time t. The total energy dissipation rate of the system may now be written

as
dE

dt
= − αµ0

γ0Ms

∫
Ω

(
∂M
∂t

)2

dr . (1.56)

(e)Note that, in full analogy with Eq. (1.22), the additional relation holds valid ∂L
∂(∇m)

· ∂
∂t

(∇m) =

∇ ·
[

∂L
∂(∇m)

· ∂m
∂t

]
−

[
∇ · ∂L

∂(∇m)

]
· ∂m

∂t
.
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There is, however, no local counterpart to this equation. It holds only valid in the integral

form given above. Only in the single magnetic moment approximation is one allowed to

write a similar equation involving now the time derivative of the total energy density.

Although the mathematical form of the equation of magnetisation motion depends

upon the dissipation models considered, it is interesting to note that from a strictly ana-

lytical standpoint the rate of change of the magnetisation vector M may mathematically

be expressed in the three orthogonal vectors M, M × Heff , and M × (M × Heff) as

∂M
∂t

= ηM − ζ (M × Heff) − ξ [M × (M × Heff)] . (1.57)

The three functions η, ζ, and ξ are unknown scalar functions of M, Heff , and the intrinsic

material parameters. The question is now to evaluate the functional dependence of η,

ζ, and ξ. If we make the assumption that the magnetic response consists of a pure

rotation, as seen above, then η must vanish. In the absence of any further theoretical

information, we may just assume that the two remaining functions, ζ and ξ, are constants.

We immediately see that the resulting equation is just the Landau-Lifshitz equation of

magnetisation motion.

1.2.4 Energy and Effective Field Expressions

At this point only the nature of the energy interactions needs to be specified. The approach

to be followed will be strictly phenomenological, although quantum mechanics can be relied

upon to provide valuable guidelines in determining suitable mathematical expressions for

some energy contributions. For a more comprehensive discussion on the physical nature of

energy contributions the reader is directed to Aharoni’s book [22] and references therein.

Exchange interactions proceed from the energy penalty associated with non-uniform

magnetisation distributions in ferromagnetic materials. The phenomenological expression

of this energy density can be written as

Eexc = A (∇m)2 , (1.58)

where A (J/m) is a material constant at a given temperature, usually called the exchange

stiffness constant. The expression above can be shown to proceed from the Heisenberg

Hamiltonian in the limit of minute rotations of magnetic moment between localised spins.

The associated effective field contribution can be immediately determined by carrying out



18 CHAPTER 1. EQUATIONS OF MAGNETISATION MOTION

the functional derivative of Eq. (1.58)

Hexc =
2A

µ0Ms
(∇2m) . (1.59)

In addition, since Eexc explicitly depends on ∇m, and is the sole energy density term to do

so, in the absence of any surface energy contribution, the boundary condition in Brown’s

equations now read

2A(∇m) · n̂ = 0 =⇒ (∇m) · n̂ ≡ ∂m
∂n̂

= 0 . (1.60)

The equivalence in the equation above can be immediately proved by carrying out, com-

ponentwise, the scalar product shown.

Expressions for the anisotropy energy density may simply be devised in order to reflect

the crystallographic symmetries of the system, i.e. the directions of preferred magneti-

sation directions. From a physical perspective they result from spin-orbit interactions.

Keeping only the lowest order term in a Taylor expansion, the uniaxial anisotropy energy

density reads

Eani = K[1 − (m · k̂)2] , (1.61)

where K (J/m3), the anisotropy constant, is a material parameter and k̂ defines the easy

axis direction.

As already mentioned in Sect. 1.1, an external magnetic field is responsible for a Zeeman

type contribution to the energy density

Ea = −µ0 (M · Ha) = −µ0Ms (m · Ha) . (1.62)

A demagnetising field Hd, arising from the magnetisation distribution M(r), provides for

an additional contribution to the total magnetic field H. From Maxwell’s equations, an

explicit expression for Hd can conveniently be expressed by defining two scalar quantities,

the volume charge density ρ and the surface charge density λ as

ρ = −∇ · m , (1.63)

λ = m · n̂ . (1.64)

Using such quantities the scalar potential Φd of the stray field is given by

Φd(r) =
Ms

4π

[∫
Ω

ρ(r′)
|r − r′|dr

′ +
∫

Γ

λ(r′)
|r − r′|dr

′
]

, (1.65)
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and Hd can be expressed as −∇Φd

Hd(r) =
Ms

4π

[∫
Ω

(r − r′)ρ(r′)
|r − r′|3

dr′ +
∫

Γ

(r − r′)λ(r′)
|r − r′|3

dr′
]

. (1.66)

The energy density associated with the demagnetising field is given by

Ed = −1
2
µ0 (M · Hd) = −1

2
µ0Ms (m · Hd) , (1.67)

where the 1/2 prefactor stems from the fact that M is the source of Hd. Contrary to

the Zeeman contribution to the total energy, the stray field energy, obtained through

an integration over the volume and the boundary surface, is necessarily positive or nil.

It follows that in a ferromagnetic material where the magnetostatic energy becomes the

leading contribution, energy may only be minimised by the pole avoidance principle. This

means that, whenever possible, the magnetisation will tend to be parallel to the boundary

surfaces and adopt configurations satisfying ∇ · m = 0 in the volume. Clearly this may

only occur at the expense of both exchange and anisotropy energies.

1.3 Reduced System of Units

All the equations presented in the preceding sections have been written using the Inter-

national System of Units (SI). However, due to historic reasons, most of the specialised

literature in the field of magnetism still employs the CGS system of units. Only in the last

decade has the SI system started to creep in. Unfortunately, the problem does not circum-

scribe to a conversion of physical quantities, for which conversion tables could alleviate

one’s pain, but implies the rewriting of even the most basic equations of electromagnetism.

The fact remains that nowadays a fair knowledge of both systems is almost a prerequisite.

In order to avoid possible confusions, an attempt is made below at defining a reduced

(dimensionless) system that allows the basic equations of micromagnetics to be written in

an invariant form.

From the constitutive relation B = µ0 (H + M) it appears highly convenient to define

the reduced magnetic field as h = H/Ms, so as to maintain the unit vector m as the

reduced magnetisation. The expression for the Zeeman energy density, together with

the definitions of reduced magnetic field and magnetisation, provides for an appropriate

definition of reduced energy densities w = E/µ0M
2
s . On the other hand, the gyromagnetic

equation (1.43) suggests the definition of the reduced time τ = γ0Mst. The ensemble

of the proposed transformations, for both the SI and the CGS systems, and the ensuing



20 CHAPTER 1. EQUATIONS OF MAGNETISATION MOTION

Reduced SI CGS

Magnetisation m M = Msm M = Msm

Magnetic field h H = Msh H = 4πMsh

b B = µ0Msb B = 4πMsb

Energy density w E = µ0M
2
s w E = 4πM2

s w

Time τ t = τ/(γ0Ms) t = τ/(4πγMs)

Table 1.1: Reduced (dimensionless) variables and conversion rules for both the SI and the

CGS systems.

Reduced

Constitutive relation b = h + m

Effective field definition heff = −δw/δm

LLG equation
(
1 + α2

)
∂m/∂τ = − (m × heff) − α [m × (m × heff)]

∂m/∂τ = − (m × heff) + α [m × (∂m/∂τ)]

Exchange energy density wexc = (Λ2/2)(∇m)2

Uniaxial anisotropy energy density wani = (Q/2)[1 − (m · k̂)2]

Zeeman energy density wa = − (m · ha)

Demagnetising energy density wd = −(1/2) (m · hd)

Table 1.2: Reduced equations of micromagnetics.

dimensionless formulation of the most widely used equations, are summarised in Tables 1.1

and 1.2, respectively.

The exchange stiffness constant A is conveniently replaced by Λ2/2, where Λ is the

well-known exchange length given by

Λ =

√
2A

µ0M2
s

(√
A

2πM2
s

in CGS

)
. (1.68)

Similarly, an anisotropy constant K is replaced by Q/2, with Q the so-called quality factor,

given by

Q =
2K

µ0M2
s

(
K

2πM2
s

in CGS
)

. (1.69)

The exchange and anisotropy energy density expressions given in Table 1.2, unfamiliar as

they might be, are the exact equivalent of those given by Hubert and Schäfer [24].

It ought to be noticed that the only dimensional parameter left in the equations is the
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exchange length Λ. Its dimensions are that of a length and this is linked with the fact that

the nabla operator ∇ has the dimensions of the inverse of a length. The decision was made

to keep the standard definition of ∇. No one should find very demanding the conversion

of lengths between different systems of units. In the definition of the reduced time τ in

the CGS system the gyromagnetic ratio γ is used instead of the gyromagnetic constant γ0.

The reader should be aware of the fact that in the CGS system γ is usually defined as a

positive quantity, contrary to the definition in Eq. (1.2). Only the dimensionless form of

the equations will be used in the following sections. When appropriate, explicit numerical

values will be given in both SI and CGS units.

Summary

The gyromagnetic equations of motion have been derived from a purely quantum-mechanical

approach. On the other hand, a fully variational approach enables the complete derivation

of Brown’s equations for general (volume as well as surface) energy contributions, and this

without the usual cumbersome variational expressions of explicit energy terms. This view-

point on the basic equations of micromagnetics additionally provides for a clear insight into

the relationship existing between the total rate of energy dissipation and the phenomeno-

logical damping parameter in the Landau-Lifshitz-Gilbert equation. Boundary conditions

associated with the LLG equation straightforwardly derive from this variational procedure.

Finally, a reduced (dimensionless) set of units is introduced, alloying for a unified writing

of the basic equations of micromagnetism in both the SI and CGS systems.





Chapter 2

Macrospin (Precessional

Dynamics)

The most simple problem in micromagnetics is that of a uniformly magnetised body im-

mersed in an external magnetic field and exhibiting a coherent magnetisation motion. In

such situations, the magnetic system under study can be conveniently described by a sole

magnetisation vector. The magnetic body is thus treated in the single spin limit, also

called a macrospin. The interest in considering such a simplistic model is double. First, a

large corpus of data shows that the quasi-static reversal properties of thin films of sizeable

dimensions may often accurately be described within the macrospin approximation (see,

for instance, [25]). Another case where this approximation is expected to efficiently ap-

ply concerns patterned elements with an almost uniform magnetisation distribution due

to lateral dimensions not exceeding, say, a few times the exchange length [26]. Second,

even when this approximation is clearly expected not to be an adequate description of

the magnetic system under study, it is still often essential to characterise the discrepan-

cies between a coherent rotation model and full-scale simulations taking into account the

spatial degrees of freedom of the magnetisation. In other words, it allows for establishing

quantitative landmarks on which to measure the degree of applicability of a model that

remains so attractive due to its simplicity.

2.1 Thin Film Energy Density

In this section we are concerned with the particular case of an infinitely extending thin

film, as depicted in Fig. 2.1. In the limit where the sole allowed magnetisation motion is

23
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Figure 2.1: Thin film axes and angles.

rotation in unison, the energy density function takes on the simple form

E = Keff sin2 θ sin2 φ−µ0Ms sin θ (Hx cos φ + Hy sinφ)+
1
2
µ0M

2
s cos2 θ (in SI) , (2.1)

or, in reduced units (see Chap. 1)

w =
Qeff

2
sin2 θ sin2 φ − sin θ (hx cos φ + hy sinφ) +

1
2

cos2 θ , (2.2)

where hx and hy are the components of the external magnetic field h(a), here restricted

to the thin film plane. The first term (Qeff/2)m2
y, if alone, defines the y axis as the hard

magnetisation axis provided Qeff be positive. It may contain contributions from both

crystalline and growth-induced anisotropies. In such situations where the magnetisation

lies in the thin film plane it defines an effective uniaxial anisotropy whose axis is shown

in Fig. 2.1. The second term represents the interaction energy between the applied field,

confined here to the xy plane, and the magnetisation which may point along any direction

in space. It is minimum when m and h are parallel. The last term corresponds to the

magnetostatic energy of a uniformly magnetised thin film of infinite lateral extension. The

demagnetising field simply becomes hd = (0, 0,−mz). The combined effects of both the

magnetostatic and anisotropy terms in Eq. (2.2) give rise to an orthorhombic anisotropy

whose principal axes are k̂, ẑ, and k̂×ẑ. Lastly, since no spatial variations of magnetisation

are allowed for, exchange contributions are nil. It is straightforward to show that in zero

applied field the stable magnetisation direction is ±x.

(a)When no danger of confusion exists, h will be used to represent the applied magnetic field.
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Magnetisation motion is described by the LLG equation (see Sect. 1.2.3)

dm
dτ

= − (m × heff) + α

(
m × dm

dτ

)
, (2.3)

which will now be rewritten in the local frame (êρ, êθ, and êφ) defined in Fig. 1.2. Due

to the constraint on the modulus of magnetisation (mρ ≡ 1), the following transformation

holds valid

dm = dθ êθ + sin θdφ êφ . (2.4)

In agreement with previous definitions, and in reduced units, the polar and azimuthal

components of the effective field are given by

hθ = −∂w

∂θ
and hφ = − 1

sin θ

∂w

∂φ
, (2.5)

respectively. Carrying out the vector products in the LLG equation yields

m × heff =




mρ = 1

mθ = 0

mφ = 0


 ×




hρ

hθ

hφ


 =




0

−hφ

+hθ


 ,

m × dm
dτ

=




mρ = 1

mθ = 0

mφ = 0


 ×




0

dθ/dτ

sin θ (dφ/dτ)


 =




0

− sin θ (dφ/dτ)

+dθ/dτ


 .

(2.6)

Therefore one may write

dθ

dτ
êθ + sin θ

dφ

dτ
êφ = +hφ êθ − hθ êφ + α

(
− sin θ

dφ

dτ
êθ +

dθ

dτ
êφ

)
, (2.7)

which transforms into the pair of equations

dθ

dτ
= +hφ − α sin θ

dφ

dτ
,

dφ

dτ
=

1
sin θ

(
−hθ + α

dθ

dτ

)
.

(2.8)

In the absence of damping, precessional motion is seen to derive directly from the crossed

actions of hφ on θ and hθ on φ, respectively. Similarly to the LLG equation in cartesian

coordinates, the equation above transforms straightforwardly into

(
1 + α2

) dθ

dτ
= αhθ + hφ = −α

∂w

∂θ
− 1

sin θ

∂w

∂φ
,

(
1 + α2

) dφ

dτ
=

1
sin θ

(−hθ + αhφ) =
1

sin θ

∂w

∂θ
− α

sin2 θ

∂w

∂φ
.

(2.9)
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The set of equations above may be preferred to Eq. (1.50) since θ and φ are indepen-

dent variables automatically satisfying ‖m‖ ≡ 1, as long as the magnetisation trajectory

bypasses the poles of the unit sphere.

For the sake of overall text legibility all numerical procedures developed in this work, be

it in the framework of the present chapter or the following, are discussed in App. A. This

choice allows not only for a more comprehensive reading of the physics developed in this

work but also provides the numerically inclined reader with a concise and self-contained

discussion on numerical procedures.

2.2 Classical Stoner-Wohlfarth Astroid

Let us first proceed with the analysis of the static equilibrium magnetisation directions.

Under the action of an applied field restricted to the thin film plane, and since the magne-

tostatic contribution always acts as an energy penalty for any out-of-plane magnetisation

orientation, static equilibrium directions necessarily belong to the film plane. Using the

coordinate system of Fig. 2.1, the energy density function at static equilibrium can now

be written as

w =
Qeff

2
sin2 φ − hx cos φ − hy sin φ , (2.10)

where φ now simply is the angle between the easy axis and m. A system described by

the energy function above is mathematically equivalent to the original Stoner-Wohlfarth

model [27] of magnetisation rotation for single domain magnetic particles.

Equilibrium orientations of m correspond to minima of w and can be found from the

equation

∂w

∂φ
= 0 . (2.11)

The stability of minima of w, as found using the equation above, are linked with the sign

of the second derivative of w with respect to the angle φ. A stable magnetisation direction

requires ∂2w/∂φ2 to be positive. It becomes metastable when the second derivative of w

with respect to φ changes sign. Therefore, the reversal/non-reversal boundary curve is to

satisfy the additional condition

∂2w

∂φ2
= 0 . (2.12)
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Using Eq. (2.10) the first derivative of w with respect to φ can be written as

1
sinφ cos φ

∂w

∂φ
= Qeff +

hx

cos φ
− hy

sinφ
. (2.13)

Differentiating the equation above allows one to write a relation involving the second

derivative, namely

∂

∂φ

(
1

sin φ cos φ

)
∂w

∂φ
+

1
sin φ cos φ

∂2w

∂φ2
= −hx sinφ

cos2 φ
− hy cos φ

sin2 φ
. (2.14)

Equation (2.11) is tantamount to the equality

hy

sinφ
− hx

cos φ
= Qeff , (2.15)

while Eq. (2.12) allows to write

hx

cos3 φ
+

hy

sin3 φ
= 0 . (2.16)

Thus, on the boundary separating reversal and non-reversal regions (I and II, respectively,

in Fig. 2.2) the two equations above are satisfied. They can be solved for hx and hy

yielding

hx = −Qeff cos3 φ and hy = Qeff sin3 φ . (2.17)

The equation above is just a parametric representation of an astroid in the hxhy plane

described by the equation

h2/3
x + h2/3

y = Q
2/3
eff . (2.18)

This astroid curve is sketched in Fig. 2.2.

The astroid curve defines not only the stability limit for equilibrium magnetisation

directions, but also helps to determine graphically the possible metastable magnetisation

directions for any given field h and thus the magnetisation curve. Indeed, magnetisation

directions can be found by using the following geometric construction, first proposed by

Slonczewski [28], and usually known as the astroid method. For a given external magnetic

field h, as represented in Fig. 2.2, the directions of m satisfying Eqs. (2.10) and (2.11) are

parallel to those tangent lines to the astroid which pass through the point h. It can be

shown that equilibrium orientations of m correspond to the tangent line with the smallest

slope, i.e. those with the smallest angle relative to the easy axis. The magnetisation

reversal properties of micron-sized thin films have indeed been fruitfully characterised

through the use of such techniques (e.g. [29]). In conclusion, it should be mentioned
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Figure 2.2: Astroid curve and equilibrium orientations of magnetisation.

that these geometrical constructions are amenable to extension to more general situations.

Non-trivial solutions to this problem have been proposed by Thiaville in two articles taking

into account two-dimensional non-uniaxial anisotropy contributions [30] and the full three-

dimensional problem [31], respectively.

2.3 Dynamical Astroid and Ballistic Trajectories

As stated in Sect. 2.1, the full description of magnetisation dynamics within a thin film

under the macrospin approximation requires solving the LLG equation with an energy

function as defined by Eq. (2.2). Kikuchi was the first to address the question of the

dynamics of magnetisation switching [5]. In his widely cited article of 1956, he presented

an analytical solution to the particular case of an uniformly magnetised sphere reacting to

an external magnetic field forming an angle of about 180◦ with the initial magnetisation

direction. His analysis focused on the determination of the critical value of the damping

constant corresponding to the minimum magnetisation switching time. For this particu-

lar situation the balance between precession and damping is struck for α = 1, a result,

however, by no means general. For values of the damping constant greater than 1 the

magnetisation simply moves slower towards the applied magnetic field, while for α < 1 the
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magnetisation moves faster but swiftly rotates around h thus increasing the net switching

time (see also [32]). Here ends, unfortunately, the scope of a full analytical treatment of

macrospin dynamics.

A first numerical analysis of the macrospin switching behaviour, adhering strictly to

the original Stoner-Wohlfarth model, was provided by He and coworkers [33]. For external

applied fields restricted to a plane containing the easy magnetisation axis, switching was

found to occur below the static astroid curve for precessional dominated systems. As

expected the static reversal/non-reversal boundary was found to be approached when

considering large values of the damping constant. In addition, above the so-determined

dynamical astroid, the possibility of multiple switching events can be demonstrated when

considering either step like [34] or fixed (finite duration) field pulses [35]. The area above

the dynamical astroid curve (the equivalent of region I in Fig. 2.2) then becomes an

intricate pattern of switching and non-switching zones, especially marked in the limit of

short pulse lengths.

The results to be presented in the following aim at extending the above mentioned

works including now, however, an active control over field pulse duration. In short this

statement means that, given a field orientation and amplitude, the pulse length is a func-

tion of the magnetisation trajectory in space. Consider a field pulse with a non-zero y

component and an initial magnetisation direction along −x. As soon as the field is applied,

precession around the y field component forces the magnetisation to leave the film plane.

Doing so, a strong demagnetising field builds up, which tends to bring the magnetisation

back in the film plane and forces a precessional motion of the magnetisation vector around

the z axis. When attempting magnetisation switching, this typical behaviour suggests the

adoption of the following field termination strategy: the pulse length value will be set as

the time necessary for the magnetisation trajectory to reach the film plane for the first

time as shown in Fig. 2.3a. Ultimately one aims at defining the switching phase diagram

under such hypotheses of field pulse cutoff control.

For simplicity field pulses are here considered to have zero rise and fall times. This

means that we limit ourselves to situations where energy dissipation during the increase

of the Zeeman energy (actually, an increase of its absolute value) may be neglected, i.e.

we aim at fully exploiting the basic precessional nature of magnetisation motion. Three

regions may be differentiated in the hxhy plane, or at least close to the dynamical astroid
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Figure 2.3: The dynamical astroid and critical switching curves. (a) Field pulse termination

criterion. (b) Schematic switching phase diagram. (c) Computed dynamical reversal/non-

reversal boundaries and critical lines as a function of damping in a Permalloy thin film with

shape anisotropy (Hk ≈ 13.13 kA/m = 165 Oe) corresponding to the energy barrier between

fully aligned magnetisation distributions in a 500 × 250 × 5 nm3 element (right).

curve. Below the lower curve in Fig. 2.3b, reversal does not occur, whatever the length

of the applied field pulse. The magnetisation reaches its new equilibrium position under

field following a trajectory of the kind shown in Fig. 2.4a. Above the lower curve, reversal

may occur, meaning that starting from the −x direction, the stable magnetisation direction

after field application becomes the +x direction. The lower curves in Fig. 2.3c are therefore

the dynamical equivalents to the first quadrant part of Stoner-Wohlfarth’s astroid in the

static regime. Noteworthy is the fact that the dynamical reversal/non-reversal boundary
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(b) Switching displaying a ballistic trajectory.

curve always falls below the static astroid, except when hy = 0, as has already been

pointed out [33]. The lower the damping parameter, the wider the separation between the

dynamical and static reversal/non-reversal boundaries. Merging between the dynamical

reversal/non-reversal curve and the static astroid is, for the parameters used in Fig. 2.3,

virtually achieved for α = 0.1.

The region where switching takes place may itself be divided into two subregions,

one where the magnetisation trajectory exhibits undershoot (Fig. 2.5a) and one where

overshoot takes place (Fig. 2.5c). Between those two subregions of the phase diagram
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exists a critical line which corresponds to an exact ballistic trajectory, i.e. a trajectory

characterised by the absence of ringing (Fig. 2.5b), stretching through all the region I in

Fig. 2.2, which implies that a small region of undershoot/overshoot (switching) can always

be found in such region. Indeed, since a macrospin has no inertia, if the applied field pulse

is cutoff exactly when the magnetisation vector points along its stable equilibrium direction

under no external field, magnetisation will forever remain static. In the limit of an applied

field pointing solely in the y direction, the critical curve becomes that portion of the Hy

axis above the dynamic reversal/non-reversal boundary satisfying Hy > Hk/2 in the zero

damping (α = 0) limit.

As already stated, switching can occur below the static reversal/non-reversal thresh-

old, and this despite the energy barrier existing between energy minima. Displaying the

macrospin trajectories on top of the energy landscape (restricted for simplicity to two

quadrants) allows to visually grasp the nature of such phenomenon. Figure 2.6 displays

three such graphics, corresponding to a ballistic switching event (Fig. 2.6a), to switching

below the static astroid curve (Fig. 2.6b), and to the non-switching case (Fig. 2.6c) for

a longitudinal field value of 16 Oe. Due to gyromagnetic effects (the out-of-plane initial

magnetisation motion, especially), the magnetisation vector effectively gets around the

energy pits eventually ending up in the switching quadrant. Focusing our attention on

Fig. 2.6a, we immediately see that dynamical trajectories instead of following the steepest

energy slope prefer to more closely follow “equienergy” lines. This is a direct consequence

of the small damping parameter values used (α = 0.01), giving preeminence to precessional

motion.

In fact, as also seen in Fig. 2.5b, critical trajectories may intuitively be understood

as a half precessional motion of magnetisation around the strongest component of the

effective magnetic field acting on the system, i.e. the demagnetising field, directed along

z, arising from out-of-plane components of magnetisation. This is all the more true as

large applied field values are used, since they determine the amount of initial out-of-

plane movement. In addition, since magnetisation motion immediately stops upon field

termination, such trajectories also correspond to minimal switching times, considering a

macrospin model. Figure 2.7a plots the switching time dependence along the critical curve

corresponding to α = 0.01 as a function of the applied magnetic field. A monotonically

decrease can be immediately perceived as a function of increasing applied field magnitude.

As stated above, ballistic trajectories can be heuristically understood as a half precession
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motion of magnetisation around the demagnetising field axis always directed along z. If

magnetisation motion was to be described solely be precession, i.e. disregarding damping

effects, Eq. (1.15) should provide for a direct expression for the switching time when
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Fig. 2.7a. The line displayed corresponds to the theoretical switching time associated with

a half-precession around 〈Hd〉. No fitting parameters are involved.

replacing ω by π/t. Since, during motion, the magnitude of the demagnetising field varies,

its average value was considered. The numerical results are presented in Fig. 2.7b along

with the theoretical line predicted by Eq. (1.15). The agreement between the theoretical

prediction and the numerical data is excellent, emphasising the intimate relation between

critical ballistic trajectories and half-precession cycles.

Intuitively, the existence or not of similar ballistic trajectories for the average value of

a magnetisation distribution, together with other phenomena, may give some indication
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on the dynamical coherence of a given magnetisation distribution. Indeed, the possibility

of magnetisation oscillation (ringing) suppression has been experimentally found by field

pulse tailoring in iron garnet films [36], a particular suitable material due to its low damping

constants and large exchange lengths. This question will be briefly addressed again in

Chap. 4.

2.4 Asymptotic Solutions for Transverse Oscillations

As stated before, even for the seemingly extremely simple problem of coherent magneti-

sation motion in a soft magnetic thin film, there exists no fully analytical solution to the

equation of magnetisation motion including damping. In the following, however, we shall

seek for an asymptotic solution at times long after the onset of the field, in the case where

the applied field has a sole component along the y direction. Because we look for an

asymptotic solution, we are entitled to linearise Eq. (2.9) in the variables η and ζ, which

represent deviations from the values of θ and φ at equilibrium under field, namely

θeq =
π

2
and sin (φeq) =

hy

Qeff
. (2.19)

Defining T as the operator d/dτ and θ = θeq + η, φ = φeq + ζ yields

[(
1 + α2

)
T + α

]
η +

(
Qeff −

h2
y

Qeff

)
ζ = 0 ,

−η +

[(
1 + α2

)
T + α

(
Qeff −

h2
y

Qeff

)]
ζ = 0 .

(2.20)

Because the LLG equation has been linearised, the solution of the set of linear differential

equations (2.20) may only apply long after the onset of the pulse. The general solution

to Eq. (2.20) are time exponentials, namely η, ζ ∝ exp (pτ). If one further assumes that

α 	 1, as it would be the case for a Permalloy thin film, for instance, the characteristic

equation reads

p2 + αp + Qeff

[
1 −

(
hy

Qeff

)2
]

= 0 . (2.21)

Two regimes may thus be separated according to the sign of the quantity

∆ = α2 − 4Qeff

[
1 −

(
hy

Qeff

)2
]

. (2.22)

If ∆ is positive, critical damping is expected to occur. This may only happen in a tiny

field amplitude span close to the anisotropy field, namely(
hy

Qeff

)2

> 1 − α2

4Qeff
. (2.23)
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In most practical cases, such a condition will not hold and damped oscillations of the

macrospin around its equilibrium position will take place. The general solution reads

η, ζ = Cη,ζe
−t/t0 cos

(
2π

t

t1
+ Phase

)
. (2.24)

The characteristic times t0 and t1 are the oscillations decay time and period, respectively.

They are equal to

t0 =
2

αγ0Ms
and t1 =

4π

γ0Ms

1√
4

(
Qeff − h2

y/Qeff

)
− α2

. (2.25)

In order to provide typical figures and a direct comparison with simulations results

to be shown in the following, let us consider below the case of small Permalloy platelets

characterised by a 2:1 aspect ratio where shape anisotropy may be shown to correspond

globally to an anisotropy field of ≈ 13.13 kA/m (165 Oe) (see Fig. 2.3). When submitted

to an external field of amplitude ≈ 9.95 kA/m (125 Oe) directed along the short axis of

the platelet, such a system, if behaving as a macrospin, would, long after the onset of the

applied field, exhibit oscillations of the magnetisation direction with a period of ≈ 0.425 ns

and a decay time of ≈ 1.13 ns, assuming α = 0.01 and µ0Ms ≈ 1 T (Ms = 800 emu/cc).

These figures indicate the kind of temporal resolution to be achieved in a time resolved

magnetometry experiment. It obviously proves highly demanding. In closing this section,

let us mention that the problem of small magnitude oscillations in the macrospin regime

can be treated on a more general footing [4].

Summary

Macrospin dynamics in thin films has been addressed in some detail, starting by a straight-

forward correlation with static properties. The switching phase diagram is determined

under the condition of field pulse cutoff control. Due to the initial out-of-plane magnetisa-

tion motion, the field pulse cutoff criterion has been chosen as the time when mz becomes

nil for the first time. Under such assumptions, a critical ballistic magnetisation trajec-

tory, corresponding to the minimum possible switching time, can be uniquely determined.

The presentation of the magnetisation trajectories on top of the energy surface landscape

allows for a clear understanding of the possibility of magnetisation switching under the

static reversal/non-reversal boundary of the classical Stoner-Wolfarth’s model. Although
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full analytical solutions to the thin film macrospin dynamics cannot be derived, asymptotic

expressions for magnetisation oscillations have been provided, allowing for a simple and

direct comparison with full-scale simulation results.



Chapter 3

Platelets Dynamics: Asymptotic

Solutions

This (transitional) chapter intends to bridge the gap between the macrospin approximation

presented in the previous chapter and full-scale micromagnetic simulations of the dynamics

of magnetisation switching in soft magnetic platelets. For lateral dimensions above, though

not too far off, the single domain limit, only a limited number of magnetisation distribu-

tions may be generated depending upon field application and, more generally, magnetic

history. We refer below to such magnetic configurations as states. Their energy hierarchy

will be established, putting a special emphasis on the link between thickness values and the

stabilisation of high remanence states. Of particular interest is the possibility of obtaining

almost single domain magnetisation distributions, which Chappert termed Coherent Spin

Structures (see [37]), and the possibility of mimicking, or inducing, coherent magnetisation

rotation processes. The particular case of transverse oscillations is presented along with a

comparison with the asymptotic analytical description of long time oscillations described

in the previous chapter. Finally, a brief discussion is provided for the limits of applicability

of asymptotic analytical solutions.

3.1 Equilibrium States: Rectangles with a 2:1 Aspect Ratio

When focusing on the magnetisation switching processes in elements of reduced lateral

dimensions, one needs first to examine the initial (remanent) magnetisation distributions

themselves, for much of the switching characteristics are conditioned by their properties.

Of particular importance is the drawing of a neat boundary between high and low rema-

39
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Figure 3.1: (Colour) Remanent magnetisation states for rectangular Permalloy platelets of

dimensions 500 × 250 × 5 nm3. The colour code maps the x magnetisation component and

the superposed arrows indicate the basic features of the magnetisation distributions.

nence states. Following on these lines, the need arises to establish the dimensional require-

ments under which these high remanence structures become stable (or at least marginally

metastable). In connection with the proposals of the Micromagnetic Modelling Activity

Group (µMAG) [38], dealing with standard problems in (static) micromagnetism, Rave

and Hubert presented an extended analysis of remanent magnetisation states in rectan-

gular Permalloy platelets [39]. Their discussion was centred on equilibrium magnetisation

configurations of 2:1 aspect ratio thin film elements (20 nm thick) with lateral dimensions

ranging from 0.1 µm to 2 µm. Only below the micrometre lateral range do Coherent Spin

Structures become the lowest energy states. Thus is established the justification for focus-

ing on the dynamics of magnetisation in submicron-sized lateral dimensioned elements.

Although there is no need to repeat here the details of Rave and Hubert’s work, it

is nevertheless useful to complement it by considering the thickness dependence of four

commonly discussed magnetisation states in rectangular platelets of lateral dimensions

500× 250 nm2 (as depicted in Fig. 3.1), and to stress a couple of important features. The

total energy values associated with these four magnetisation distributions are presented in

Table 3.1 as a function of thickness. Below some threshold thickness value, high remanence

magnetisation distributions become energetically more favourable than low remanence

(flux closure) ones, as evidenced in Fig. 3.2a when considering the Landau and S states.

Reasons for such behaviour appear clear when plotting the values of the individual energy

terms (here only exchange and magnetostatic) versus thickness (Fig. 3.2b). Although
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3 nm 5 nm 10 nm

Diamond 0.016911 0.018400 0.020862

Landau 0.011381 0.013248 0.016949

Flower 0.008678 0.012881 0.021812

S 0.007347 0.010998 0.019096

Table 3.1: Reduced total energy values for the four remanent states displayed in Fig. 3.1,

and for different thickness values. Bold figures indicate, for each thickness value, the lowest

energy state.
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Figure 3.2: Energy versus thickness dependence for the Landau and S states. (a) Total

energy. (b) Exchange and magnetostatic contributions as a function of thickness.

exchange energy values scale much at the same rate as a function of thickness (closure

domain patterns having larger values than high remanence distributions), the increase

in demagnetising energy for larger thickness values is much more noticeable in the S

state. This reflects the additional energy penalty associated with the thickness scaling

of volume magnetostatic contributions. Flux closure patterns, being mostly divergence-

free, are essentially sensitive to the sole thickness scaling of surface demagnetising terms.

Mostly divergence-free refers here to the existence of residual dipolar type charges within

Néel walls.
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For the given lateral dimensions, and within the thickness range from 3 to 5 nanometres,

the S state remains the lowest possible energy state, even in comparison with highly

symmetrical (strictly in-plane) magnetisation configurations such as the Flower state. This

may be accounted for by the intrinsic features of the S state. As schematically indicated

by the superimposed arrows in Fig. 3.1, the y magnetisation component at the element’s

core is opposite to that of the end domains. The volume charges so created (see Fig. 3.3)

effectively compensate (although partially) both the rim charges and the energy penalty

arising from a more non-uniform overall magnetisation distribution. In addition, volume

charges are smeared throughout the platelet.

The initialisation of an S state may conveniently be achieved under the action of an

external magnetic field directed at, for example, 45◦ with respect to the element’s long axis.

The direction of the edge closure domains will be aligned with the transverse direction of

the applied field. In addition, this angular value displays a large margin of tolerance,

ranging from a misorientation of a few degrees from the element’s long axis to an almost

perpendicular transverse direction. The intrinsic features of the S state (high transverse

susceptibility and both end domain alignment and stability) will play a decisive role in

the basic mechanisms of stable magnetisation switching, as will be seen in the following

(Chap. 4). Actually, the S state, with its parallel alignment of closure domains, constitutes

a most suitable magnetisation distribution in connection with the operating requirements

of cross-point Magnetic Random Access Memory (MRAM) architectures. Throughout,
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the S state will be consistently used as the initial magnetisation configuration.

Another commonly considered high remanence magnetisation state, the C state, was

purposefully not considered. This magnetisation distribution is in all respects similar to

an S state, differing only by the fact that the two closure domains are now oppositely

oriented. For 2:1 aspect ratio rectangular Permalloy elements its energy value (and for

the lateral dimensions considered above also the reversal field value) is virtually that of

the S state [39]. In both cases, the quasi-static reversal process displays the same degree

of complexity.

3.2 Transverse Susceptibility: Simulations

As seen above, the leading factor in choosing a particular magnetisation state was its

degree of spatial magnetisation coherence, the aim being clearly directed at the use of

high remanence magnetisation distributions in attempting to reproduce the main features

of a macrospin type switching in submicron soft magnetic elements (whose dimensions are

typically those in Fig. 3.1). From this standpoint, we present in this section a detailed

analysis of a simulated experiment aimed at establishing the degree of macrospin behaviour

in the dynamical response of a 0.5 × 0.25 µm2 Permalloy platelet submitted to a sole y-

directed field (along the element’s short axis) in an initial S state. A damping parameter

value of 0.01 will be supposed to hold true in the following when considering Permalloy

elements.

The time evolution of the average values of magnetisation components is shown in

Fig. 3.4 for a magnetic field amplitude value of 125 Oe. Focusing on the average x mag-

netisation component 〈mx〉, seems to behave essentially as a damped sine type oscillation.

On the other hand, 〈my〉 clearly does not follows such a behaviour. Reasons for this appear

clear when looking at Fig. 3.5 which exhibits the magnetisation distributions correspond-

ing to successive maxima (right) and minima (left) of 〈mx〉 as a function of increasing

time. Clear deviations from a rotation in unison are apparent when looking at the sim-

ulation snapshots. The main cause for such a behaviour is the pole avoidance principle

which prevents the magnetisation from rotating freely close to the platelet rim. It may be

said that the system oscillates between an S state where the majority of magnetisation is

aligned along the long axis (left column) and a second S state where magnetisation is pre-

dominantly aligned along the short axis (right column in Fig. 3.5). This is the main cause
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Figure 3.4: Time evolution of the average values of magnetisation components in a Permalloy

platelet (0.5 × 0.25 µm2) in an initial S state, submitted to a step like constant transverse

applied magnetic field of amplitude 125 Oe.

for the slight deviation from a perfect damped sine type oscillation versus time. Actually,

evoking the pole avoidance principle is slightly misleading because the lowering of the

rim charge density is compensated by the appearance of volume charges. In other words,

charges prefer to smear out in order to decrease the magnetostatic energy, as already seen

before.

Further insight into the macrospin behaviour of micromagnetic systems may be gained

by taking a closer look at its energy damping characteristics. In Chap. 1 a concise expres-

sion for the total energy dissipation rate of a micromagnetic system was derived which

depends only on intrinsic material parameters and the actual magnetisation motion. Such

equation can be immediately rewritten (in reduced units) in terms of the damping param-

eter, yielding

αdyn = − d

dτ

(∫
Ω

w dr
) / ∫

Ω

(
∂m
∂τ

)2

dr . (3.1)

During a dynamic micromagnetic calculation the recalculated value of the damping pa-

rameter αdyn can therefore be monitored and compared with the imposed damping value

α. The importance of this (new) control feature in asserting the internal coherence of

dynamical micromagnetic calculations will be amply discussed in the App. A. We are

here interested in considering the macrospin equivalent of Eq. (3.1), i.e. the expression

obtained if the magnetic system was indeed rotating in unison as a single magnetic vector
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Figure 3.5: (Colour) Magnetisation distributions versus time. Left (right) column corre-

spond to the successive minima (maxima) of 〈mx〉 in Fig. 3.4. The picture at the top left

represents the magnetisation distribution of the S state at rest.
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would do. Equation (3.1) straightforwardly transforms into

αMS = −d 〈w〉
dτ

/ (
d 〈m〉

dτ

)2

. (3.2)

The results obtained for the transverse oscillations experiment in Fig. 3.4 are given in

Fig. 3.6 for the first 2.5 ns. The average magnetisation components are presented in

Figs. 3.6a through 3.6c and the recalculated α values are given in Fig. 3.6e. An immediate

comment concerns the nature of the strong peaks in αMS which correspond roughly to

stationary values of the average in-plane magnetisation components and to zeros of 〈mz〉.

Since a true macro spin system does evolve in time in accordance with the imposed value

of the damping parameter (here 0.01), the aforementioned peaks must necessarily stand

for a measure of the loss of magnetisation coherence, i.e. they indicate the time windows

where the system, as a whole, can no longer be regarded as a macrospin(a). To support this

statement we present in Fig. 3.7 a set of magnetisation snapshots covering an oscillation

period of 〈mx〉. Indeed, when comparing the given time values with the data in Fig. 3.6,

extrema of 〈mx〉 are seen to be in a one-to-one correlation with αMS peaks and correspond

to such magnetisation patterns which more clearly deviate from a uniform distribution. In

between (e.g. the shaded area in Fig. 3.6) magnetisation distributions do match those of

almost perfectly aligned structures along the element’s main diagonal (right side images in

Fig. 3.7), and the values of αMS approach that of α (or for that matter αdyn) as explicitly

presented in Fig. 3.6e using a highly zoomed y scale. It should be emphasised that even

in such time windows the values of αMS are persistently larger than those of αdyn (which,

as anticipated, remain at a constant value of 0.01).

The difference between αdyn and αMS stands therefore for a quantitative measure of

the degree of coherency of a micromagnetic system (or the lack of it). Since every experi-

mental measurement of α is bound to actually represent αMS the principle above can be

immediately transposed into the realm of experimental measurements, as any deviations

from an overall macrospin behaviour is bound to produce different values of the damping

parameter αMS. Indeed, the values of the damping parameter determined as a function of

the longitudinal bias field in large Permalloy stripes are easily interpreted in terms of spa-

tial nonuniform magnetisation distribution [15]. Allowing for non-uniform magnetisation

distributions in micromagnetic simulations immediately leads back to the correct values

(a)The peaks in αMS must not be understood as a result of poor numerical procedures, as clearly demon-

strated in App. A.
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Figure 3.6: Recalculated α values for the simulation in Fig. 3.4. (a)–(c) Average x, y, and

z magnetisation components, respectively. (d) Deviation of the norm of the average mag-

netisation vector. (e) Recalculated α values as a function of time according to Eqs. (3.1)

and (3.2). (f) Zoomed time windows displaying the comparison between the smallest at-

tainable values of αMS and the featureless curve of αdyn.
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Figure 3.7: (Colour) Magnetisation snapshots corresponding to one oscillation period of

Fig. 3.6. Right side images were taken at intermediate times between successive extrema of

〈mx〉.

of the damping parameter [40].

Comparison between micromagnetic simulations results and fittings obtained from ex-

perimental data can therefore provide clear indications on the degree of non-macrospin

behaviour of the experimental system under study. Future high resolution (both spatial

and temporal) data should help clarify this point in the near future [16].

It proves nevertheless worthwhile to compare the predictions of the macrospin model

with the oscillation period and decay time of 〈mx〉 at times beyond, say, a few nanosec-

onds. In this way, full use can be made of the asymptotic solution for transverse oscillations

derived in Sect. 2.4 for close-to-equilibrium magnetisation oscillations in low damping ma-

terials. The result is shown in Fig. 3.8a. Fitting the data displayed with Eq. (2.25) leads

to values of the decay time and oscillation period equal to t0 = 1.245 ns and t1 = 0.415 ns,

respectively, in fair agreement with expectations (1.130 ns and 0.425 ns, respectively). The

inset displays the fitted function along with the experimental data for times smaller than 1
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Figure 3.8: Analytical comparison of transverse oscillations experiment. (a) Fit of the 〈mx〉
oscillations at times long after field pulse application (> 1 ns). The enlarged inset provides

a comparison between the fitting curve and the experimental data at times smaller than

1 nanosecond distinctly revealing that the asymptotic expressions clearly do not apply for

time windows other than close-to-equilibrium time values. The dotted line corresponds to

the symbols in the larger image. (b) Spatial trajectory of the average magnetisation vector.

nanosecond, clearly evidencing the non-applicability (as should be expected) of the asymp-

totic oscillation expression within that time window. It should be mentioned that fitting

the average magnetisation curves, or for that matter the experimentally measured data,

with a single spin LLG equation using different time windows may lead to the determina-

tion of quite different intrinsic parameters, such as α. This should, of course, not be taken
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as an indication that a sole intrinsic damping parameter (α in the LLG equation) is un-

able to represent actual measured data, as has been already demonstrated by Sandler and

coworkers [40], since (among other factors) the precession frequency in complex micromag-

netic structures is bound to change over time due to its proportionality with heff [41]. The

trajectory described by the average magnetisation vector is equally well behaved, at times

long after pulse application, as shown in Fig. 3.8b. Unsurprisingly, a macrospin type be-

haviour is anticipated to be best respected (in high remanence magnetisation states) when

the oscillations amplitude vanish away, i.e. in situations where magnetisation coherence

is best approached. Recent experimental data support this statement. In magnetisation

ringing suppression experiments [36, 42] and magnetisation dynamic response to both step-

like [42] and pulsed [41] magnetic fields the essential macro spin nature of magnetisation

motion can be asserted in magnetic elements of considerable lateral extension (100 µm to

1 mm).

As will be seen in the following chapter, when attempting magnetisation switching,

this simple picture of an almost macro spin behaviour must be revised. The differences

are now between the average magnetisation on the element and the details of small scale

magnetisation directions and the degree of coherence between neighbouring regions. The

main goal, however, still remains the development of suitable strategies leading to the

quasi-coherent magnetisation rotation during switching.

Summary

The magnetisation state energy hierarchy was established for a 500 × 250 nm2 Permalloy

platelet as a function of thickness (3, 5, and 10 nm) and for the S, Flower, Landau, and

Diamond configurations. For the 5 nm thickness value considered throughout this work,

high remanence states become the most stable energy configurations. Field initialisation

considerations, on top of a strong transverse field susceptibility, lead us to the uncon-

ditional adoption of the S state. Transverse susceptibility numerical experiments were

performed. These provide for both a clear determination of the characteristic time scales

in the dynamics of such platelets, but also allows for a straightforward evaluation of the

degree of macrospin like behaviour of non-uniform magnetisation distributions through a

macrospin equivalent as expressed via self-consistency of the damping parameter.



Chapter 4

Platelets Dynamics:

Micromagnetic Simulations

As suggested by the discussion in the previous chapter, the simple picture of an overall

macrospin behaviour should be revised when considering magnetisation switching(a) in

submicron-sized elements. Due attention must now be paid to the details of small-scale

magnetisation distributions (in particular the degree of coherence between neighbouring

regions) possibly hidden underneath smooth average magnetisation curves. Additionally,

the quest for subnanosecond switching times necessarily binds one’s attention to the role of

precession-driven motion. The aim is now the development of suitable switching strategies

possibly mimicking the macrospin ballistic trajectories (see Sect. 2.3) and leading to a

quasi-coherent magnetisation rotation. Such are also some of the issues connected with

MRAM development, i.e. the achievement of fast, stable, and reversible state switching

between non-flux closure, high remanence, magnetisation distributions. Fully exploiting

the intrinsic design features of cross-point MRAM architectures [43], actually leads to a

rethinking of the operating principles of bit writing through an optimised use of the two

available orthogonal field pulses.

4.1 Classical Thinking: Easy Axis Field Switching

The first studies of magnetisation switching in patterned soft magnetic elements followed

the approach commonly employed in most quasi-static reversal experiments, i.e. the sole

(a)Throughout this work, the term switching will be used when referring to the dynamics of magnetisation

motion, as opposed to the word reversal (employed solely in quasi-statics).

51
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Figure 4.1: Reprinted from J. Appl. Phys. 83, 5321 (1998). S state’s quasi-static reversal

properties induced by an easy axis oriented magnetic field. a–c Differential Phase Contrast

(DPC) images of a 4 × 2 µm2 element recorded at different applied fields. P denotes the

pinning direction in the spin valve stack (see text) and the double headed arrows denote

the direction of the induction mapped in each image. g–i Schematics of the magnetisation

distributions as deduced from the images in a–c (note that the arrows within the closure

domains have been misplaced in h).

use of a field pulse directed along the element’s easy axis. In 4 × 2 µm2 patterned spin

valve elements, with an 8 nm thick Permalloy free layer, Chapman and coworkers reported

on the details of the magnetisation reversal process set off by the action of an in-plane,

easy axis oriented, magnetic field [44] (see Fig. 4.1). For the lateral dimensions indicated

above, and after saturation under the action of a nominal x-directed field (Fig. 4.1a),

their initial magnetisation distribution was an S state oriented along the element’s longest

edge. The sequence of Differential Phase Contrast (DPC) images above clearly reveals

that magnetisation reversal takes place following the growth of the S state’s end domains

towards the centre of the platelet and their subsequent rotation in the direction of the

applied field.

Consider next an equivalent switching experiment in a Permalloy submicron element,

whose lateral dimensions are still those given in Fig. 3.1. The simulation results are dis-

played in Fig. 4.2 in terms of the average magnetisation components. Clearly, switching

may be attained under the sole action of an x-directed field pulse, and this well within the

first nanosecond time window. The sole presentation of the average values of magnetisa-
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Figure 4.2: S state magnetisation switching under the sole action of an x-directed field pulse.

The shaded areas delineate the time window where the field pulse is nonzero. (a) In-plane

average magnetisation components. The inset displays the field pulse profile (b) Maximum,

average, and minimum out-of-plane magnetisation values as a function of time.

tion components is, however, highly misleading, since their smooth behaviour conceals a

rather complex picture at a local scale. Indeed, despite a rather featureless 〈mz〉 curve, the

maximum value of the out-of-plane magnetisation component grazes 1, indicating the near

nucleation of micromagnetic structures such as vortices (Fig. 4.2b). For the data shown,

the maximum out-of-plane angle (ϕ = π − θ) inside the platelet corresponds to values as

large as 72◦. Since micromagnetic structures such as lines and vortices are known to have

a considerable influence on magnetisation dynamics, as amply demonstrated in the study

of magnetic bubbles [6], and raise its degree of complexity accordingly, their nucleation

do pose serious problems when aiming at a fast and predictable switching mechanism (as

already alluded to in Chapman’s work). Additionally, from a strictly numerical viewpoint,

the dynamics of such small magnetic structures represent a daunting challenge to mi-

cromagnetic simulations. A more thorough discussion of the topological questions raised
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Figure 4.3: (Colour) Centre point magnetisation trajectory for the simulation in Fig. 4.2 and

selected magnetisation distribution snapshots. The trajectory is displayed up to t ≈ 0.32 ns,

corresponding to the pulse cutoff time. Points a, b, c, d, and e correspond to times -0.05,

0.14, 0.21, 0.28, and 0.31 nanoseconds, respectively.

by strong “gyrotropic” effects on micromagnetic structures such as vortices, and their

dependence on spatial meshing, will be made in App. A.

Further insights into the switching process taking place under the action of a sole

easy axis field can be obtained by looking at the data presented in Fig. 4.3. Here, the

trajectory of the central magnetisation vector is displayed from −0.05 to approximately

0.32 nanoseconds, along with several magnetisation snapshots collected at chosen times.
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It can be seen that magnetisation movement starts, as in quasi-static experiments, by an

expansion of the S state’s edge closure domains, with a correspondent clockwise rotation

inside the domains. Simultaneously, the magnetisation at the core of the platelet rotates

counterclockwise giving rise to the formation of two 360◦ walls (snapshots a through c).

This peculiar switching mechanism can be easily understood when taking a closer look at

the magnetisation distribution of an S state. At the centre of the distribution, magneti-

sation tends to compensate charges, as already schematically indicated by the superposed

arrows in Fig. 3.1, and is actually tilted towards the negative y values, whereas the end

domains point along +y. This is a general feature of S states, even for lateral dimensions

smaller than those used in this work, and originates from the existing balance between

magnetostatic and exchange energies. The former stems from charges within the transition

regions (walls) separating the core region of the platelet from its two closure domains as

well as from boundary charges (see Fig. 3.3). The latter arises from the nonuniform mag-

netisation distribution. The aforementioned 360◦ walls eventually unwind at the cost of

large magnetisation fluctuations (snapshots d and e) and will, at length, lead to a switched

(mainly +x-oriented) S state.

Although the analysis above is in fair agreement with the broad features of the in-plane

magnetisation components’ time evolution presented in the work of Koch et al [14], in

what proved to be the first combined numerical and experimental study of subnanosecond

switching in micron-sized magnetic elements (0.8 × 1.6 µm2), the fine prints of the actual

magnetisation distributions are still the subject of debate. In particular, the details of the

closure domains’ rotation and expansion are in disagreement with our own data, theirs

evidencing some sort of edge pinning effect of an unknown origin. Apart from exhaustive

comparisons between different simulation data, let it be hoped that imaging techniques

capable of both subnanosecond and tenths of nanometres, time and spatial resolutions,

respectively, will provide some day experimental data precise enough to allow for a detailed

comparison with simulation predictions. This, however, remains a genuine challenge (see,

for instance, [16] and references therein).

The field pulse parameters used in the simulation above (Figs. 4.2 and 4.3) have been

chosen in order to achieve the fastest possible switching without, nonetheless, nucleating

strongly localised micromagnetic structures, for, as already stated, these may pose severe

physical problems. In situations where the energy dissipation rate becomes the leading

factor governing magnetisation motion, either through the use of a large damping param-
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eter α or when field pulse values decay over a wide time window when compared with the

characteristic precessional frequency of the system, the final magnetisation distribution

may become trapped in a low remanence configuration, such as a Landau or a Diamond

state (see Fig. 3.1), if micromagnetic structures have been nucleated during the switching

process [45].

4.2 Precessional Switching

Both the existence of ballistic switching trajectories in the macrospin limit and the quasi-

uniform nature of magnetisation configurations in submicron-sized elements allow to as-

sume that we can indeed expect to induce magnetisation switching through a close-to-

unison rotation. The S state’s high transverse susceptibility (when the field pulse direc-

tion is aligned with the end domains’ magnetisation) can be effectively used in triggering

a clockwise magnetisation rotation in the core of the element (if 〈mx〉 < 0), as already

exemplified in the transverse oscillations experiments of Sect. 3.2. In full analogy with the

discussion on macrospin behaviour, a strong precessional motion will be unleashed by this

y-directed field pulse (vide infra).

Currently considered cross-point MRAM architectures [43] rely on memory cell write

selectivity through the combined action of two orthogonal field pulses arising from indepen-

dently addressed current lines, above and below the active magnetic cell(b) (see Fig. 4.4).

Fully exploiting this feature provides for an additional degree of control over the mecha-

nisms of bit switching, as will be shown in Sect. 4.2.2. As a first approach, we look into

the use of simultaneous (and square) field pulses, following the approach of Chap. 2. Such

a discussion not only introduces the basic principles of precessional switching by quasi-

coherent magnetisation rotation in patterned structures, but also allows to address the

issue of ringing control after magnetisation switching.

4.2.1 Superimposed Field Pulses and Apparent Ringing Suppression

The existence of oscillation-free (ballistic) trajectories via pulse length tailoring has been

clearly established in Chap. 2. Ringing control in finite size elements remains, however,

more elusive. Bauer and coworkers [36] (see Fig. 4.5) have indeed produced experimental

(b)For simplicity, in simulations possibly connected with the operating principles of MRAM cells, current

generated fields are assumed to be uniform inside the active magnetic layer.



4.2. PRECESSIONAL SWITCHING 57

m

J

J

x
y

z
Hx

Hy

Figure 4.4: Schematic view of an MRAM cell in a cross-point architecture array. A single

memory cell is addressed by the simultaneous use of both the word and bit current lines. The

magnitude and time profile of the two orthogonal field pulses may then be independently

controlled.

Figure 4.5: Reprinted from Appl. Phys. Lett. 76, 2758 (2000). Ringing suppression

in an iron garnet film through pulse length tailoring. Time evolution of the measured x

magnetisation component (in-plane and aligned with the field direction) versus time for

different pulse duration values, as indicated. The dotted vertical line indicates the pulse

starting time.

evidence for ringing suppression in patterned elements. However, the size of those

elements was large enough in order for the sensing light beam to probe an area where
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Figure 4.6: Ringing suppression after magnetisation switching by way of pulse length tailor-

ing in 500×250 nm2, 5 nm thick, Permalloy elements. (a) Average x magnetisation curves.

The bold line corresponds to ∆tH = 146 ps. Beware of the expanded scale of 〈mx〉. (b)

Average y magnetisation curves (vertically shifted for increased visibility). The shaded area

corresponds to the pulse duration for the non-ringing case: ∆tH = 146 ps.

magnetisation could rotate in close to unison motion. Moreover, these experiments do not

involve switching, but a limited deviation from the equilibrium magnetisation position.

Therefore, the development of a switching strategy leading to the definition of analogous

(macrospin) critical ballistic magnetisation trajectories will now be attempted for the case

of submicron size patterned elements.

Looking back at Fig. 2.3, it is clear that for each α value, the critical curve for ballistic

switching spans an almost infinite range of field values. The larger the field, the shorter the

switching time. Attempting to reproduce these results in the case of finite size elements is

numerically out of reach. Therefore, only selected examples of typical behaviours may be

provided. The choice was made to restrict field pulse magnitudes to values smaller than ≈

200 Oe. A numerical equivalent to a ringing suppression experiment is displayed in Fig. 4.6.
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A visible control over the post-switching motion can indeed be achieved by finely adjusting

the field pulse duration. The large fluctuations displayed in the average y magnetisation

curves as a function of pulse duration (Fig. 4.6b) lead, in the first approximation, to the

conclusion of a switching experiment that turns out to be extremely sensitive to small

variations in applied field characteristics. It is, however, utmost instructive to present

the same data in a rather different manner. Collecting the combined information of the

three curves corresponding to the different average magnetisation components, one can

represent, within the unit sphere (〈mx〉2 + 〈my〉2 + 〈mz〉2 ≤ 1), an average magnetisation

trajectory. Two of such trajectories are plotted in Fig. 4.7: On top the large amplitude

oscillation case and at the bottom the suppressed oscillations situation for the displayed

field pulse amplitude values. During field application one is immediately struck by the

evidence of an identical average trajectory. This is a direct consequence of the strong

precessional motion of magnetisation around the demagnetising field axis, in full analogy

with the results presented in Sect. 2.3 (compare with the macrospin trajectories in Fig. 2.5).

Indeed, for both trajectories, the maximum 〈mz〉 value is approximately equal to 0.1.

The associated demagnetising field in Permalloy reaches therefore a value of ≈ 1000 Oe,

which completely supersedes the effects of the transverse applied field value (here 175 Oe).

After this initial out of the plane, fast, magnetisation rotation, roughly coinciding with

the duration of the applied field pulse, differences appear. In the controlled ringing case

(Fig. 4.7a), the average magnetisation trajectory rapidly arrives at its switched equilibrium

value, displaying reduced oscillations. In contrast, the larger field pulse length simulation

(Fig. 4.7b) reveals, after pulse cutoff, a significant oscillatory motion.

These large oscillations describe a strongly flattened ellipse, the characteristics of which

are defined by the relative values of the demagnetising field (arising from the out-of-plane

magnetisation component) and the shape anisotropy field associated with the equilib-

rium magnetisation distribution. They closely resemble those of the macrospin dynamical

switching experiments for non-optimal field pulse values [4]. These large macrospin like

fluctuations actually remain strongly confined in the yz plane, as shown in Fig. 4.7, and

never approach the critical 〈mx〉 value of zero. In the same respect the average my value

remains always greater than zero, which is a general feature of an S to S state switching.

From both numerical and experimental studies on infinite layer (in a single spin approxima-

tion) a high degree of control can be achieved in controlling ringing arising in the aftermath

of magnetisation state switching. In the case of submicron laterally defined magnetic el-
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Figure 4.7: Magnetisation trajectories of the average magnetisation vector for two of the

curves in Fig. 4.6. (a) Best ringing suppression conditions. The angle ϕ represented by

the dashed lines indicates the maximum out of plane value of the average magnetisation

vector (7.7◦). (b) Strong oscillations condition. The oscillations observed in the average y

component of magnetisation correspond to macrospin like oscillations of the element as a

whole. The dots upon the magnetisation trajectories indicate the field cutoff instant.

ements, this ringing suppression should be viewed as simply apparent. In other words,

if the reminiscence of a coherent macrospin type movement can be effectively controlled,

local magnetisation fluctuations still prevail on a localised scale, as shown below.

One can summarise the overall magnetisation motion by looking at the sequence of

diagrams in Fig. 4.8. Both state transitions are depicted, i.e. from a negative average x
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Figure 4.8: Diagram representing the precessional-driven fast switching mechanism. Both

state transitions are depicted. (a) Initial magnetisation state. (b) Precession around the

applied field forces magnetisation out of the platelet’s plane therefore generating a z directed

demagnetising field. (c) Strong precessional motion around Hd in the direction of the final

magnetisation state. Note that in both cases the direction of the S state end domain remains

unchanged and are effectively stabilised by the y-directed field pulse.

magnetisation component to a positive one (left side) and vice versa (right side). Both

transitions originate from the action of the same transverse field pulse, which not only

initiates magnetisation movement but helps, afterwards, in stabilising the end domains

direction. Focusing on the left sequence, the process can be described as follows. Upon

transverse field application, the magnetisation starts a precessional movement that forces

it out of the film plane. Doing so, a strong demagnetising field develops in the opposite

direction. Considering the saturation magnetisation value of Permalloy thin films, and

taking into account the reduced thickness values used, one can see that the magnitude

of such field will be far greater than that of the applied or shape anisotropy. The inner

core region of the platelet will now continue its precessional movement, but now revolving

around the demagnetising field, much as in the case of macrospin ballistic trajectories

(see Sect. 2.3). Simple geometrical considerations reveal that magnetisation will now ro-

tate towards positive x values: The larger the field, the faster the magnetisation swing.

At this stage, and still focusing on the left sequence, the +x-directed field pulse actively

participates in damping out residual magnetisation fluctuations and stabilises a mainly

+x-oriented magnetisation state. If the whole process can justly be associated with pre-

cession, it is not so much the action of the applied pulse that allows for the attaintment of

subnanosecond switching speeds but the fast rotation that ensues from a precession around
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the demagnetising field, efficiently driving the magnetisation towards its new equilibrium

direction. One condition needs, however, to be satisfied: The field pulse rise times must

remain small versus the precessional period of the active (here demagnetising) field value.

Contrary to widespread assumptions, edge closure domains not only do not hinder

the achievement of a quasi-coherent magnetisation rotation process but can be effectively

used in stabilising the end state magnetisation distribution. Further details on the basic

micromagnetic mechanisms of this process will be given next, in the framework of an

optimised and still more controlled switching experiment.

4.2.2 Sequential Field Pulses

Given the basic principles of precessional driven magnetisation switching described above,

a better degree of control can be expected to be gained by time-shifting the transverse and

longitudinal field pulses. This procedure can be regarded as the dynamical equivalent of

quasi-static magnetisation reversal experiments under the combined action of a constant

transverse bias field and an axial field. It was, to the authors knowledge, first proposed

by Miltat and coworkers at the 1999 MRS Spring Meeting [45] and at the 1999 edition

of Frontiers in Magnetism [46]. The claims made of a more controlled switching process

have been tentatively put to test afterwards, albeit in larger elements than those used in

this work and considering fairly long (≈ 20 ns) field pulses [47]. Even if the experimental

data bear no direct link with the precessional driven switching mechanism described in

the previous section, due to the fact that the field pulse durations are significantly larger

than the characteristic precessional times of the system, they still support the idea of

better controlled switching events, if only for the stabilisation of end domains. Again,

attempting to validate the mechanisms of magnetisation switching drives us to the frontiers

of experimental techniques’ capabilities (see [18]).

The initial quasi-coherent magnetisation rotation of the platelet’s inner core region is

uniquely controlled by the transverse field pulse, actively exploiting the S state demagnetis-

ing field-mediated high transverse susceptibility. Stabilisation of the average magnetisation

component in the aftermath of the demagnetising field controlled motion is imposed by a

sole longitudinal (+x-directed) field pulse, that is delayed with respect to the transverse

field pulse. The results of a near optimised numerical switching experiment, where all

field pulse parameters have been selected in order to obtain a quasi non-ringing switching
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Figure 4.9: Near optimised, quasi non-ringing, sequential field pulse switching experiment.

Grey areas stand for the time window were field pulses are nonzero. (a) In-plane average

magnetisation components. The inset displays the profile details of both field pulses. (b)

Maximum, average, and minimum out-of-plane magnetisation component. (c) Recalculated

α values according to Sect. 3.2.

event, is presented in Fig. 4.9 and is to be compared with those given in the previous

section. In broad terms the switching mechanism can be divided into these two phases,

but the intricacies of the process deserve that we enter into the fine details by providing

a series of magnetisation snapshots taken at selected time values (Fig. 4.10). After the
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Figure 4.10: (Colour) Sequence of magnetisation snapshots corresponding to the curves

presented in Fig. 4.9.

application of the transverse field pulse (≈ 200 ps), the magnetisation in the platelet’s

core region has almost completely rotated towards the positive x direction. The magneti-

sation distribution now resembles to a rotated (directed along y) S state. At the top and

bottom edges, magnetisation is still pointing along its original direction (−x). Completion
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of the switching process, under the action of the longitudinal field pulse, should now get

rid of these newly developed edge closure domains (see also [48]). This is achieved by

the development of a magnetisation fluctuation at both the top and bottom edges of the

platelet that will eventually push the end domains towards the left and right boundaries,

respectively (see Fig. 4.11). These highly localised fluctuations, besides moving along the

top and bottom edges, also propagate towards the element’s core in what resemble soliton

like waves (300 and 350 picoseconds snapshots in Fig. 4.11 and Fig. 4.12). The strong

precessional motion associated with such fluctuations is also the driving force behind the

completion of the switching process and the overall definition of a plus x oriented S state.

This can most clearly be seen in the magnetisation snapshots representation of Fig. 4.12.

While the centre region of the platelet slowly rotates clockwise under the action of the ex-

ternal x field pulse, areas corresponding to the passing of these magnetisation fluctuations

(coloured in blue) almost immediately align their magnetisation with the direction of the

field pulse (see in particular the 350 ps snapshot).

From the collision of these fluctuations at the element’s centre results a background

of magnetisation oscillations on a small spatial scale, which nevertheless preserve the

initial direction of the S state’s closure domains. The expulsion of the newly created

top and bottom end domains is followed by a final phase where, essentially, the system

relaxes into its new equilibrium configuration (+x-directed S state). This occurs in a

relatively long time scale within which magnetisation fluctuations damp out through a

mechanism resembling that of mode ramification with its associated energy transfer into

shorter wavelength fluctuations (Fig 4.13). In the end, the out-of-plane magnetisation

component landscape proves strongly reminiscent of water waves in a confined volume,

presenting, nonetheless, at a small spatial scale, relatively large fluctuations as compared

with the average value (compare the curves given in Fig. 4.9b). Another particular feature

of this process relates to its associated (overall) damping value, as given by the αMS values

in Fig. 4.9c, which, on the average, appears to display a critical value close to 1, a clear

indication of the damping efficiency of such mechanisms.

Interestingly enough, full animations of switching events such as represented in Figs. 4.10

and 4.11 leave the impression of interactive surface waves with apparent reflections along

the element’s boundaries. Such a picture would remain essentially incomplete without

noticing that waves are here precessional waves. Their activity depends on the effective
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Figure 4.11: (Colour) Sequence of magnetisation snapshots corresponding to the curves

presented in Fig. 4.9 and in a one-to-one correspondence with the images given in Fig. 4.10.

The three-dimensional surface is scaled by the out-of-plane magnetisation component and

coloured according to the value of my.

field distribution which gives rise to them. At the same time, due to damping and wave

interaction, the effective field landscape evolves continuously. Here waves must therefore
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Figure 4.12: (Colour) Magnetisation snapshots highlighting the out-of-plane fluctuations

arising from the longitudinal field pulse and the corresponding strong precessional motion

of magnetisation swiftly rotating towards positive x values.

not be compared to the superposition of waves in a purely elastic medium in the linear

excitation regime, namely a regime where Hooke’s law applies. The experiments of Acre-

mann and coworkers [49] provide the closest experimental realisation of micromagnetic

simulations of the type shown here. Consider an experiment sensitive to the out-of-plane

magnetisation component (Polar Kerr Effect, for instance), then a tree-dimensional repre-

sentation of the experimental signal versus position and time would yield pictures essen-

tially comparable to those of Fig. 4.11, although a large increase in spatial resolution is

still required.

As already stated, fully continuous magnetisation transitions ensure the overall con-

servation of the lateral edge domains magnetisation directions, leading to the stability of

an S to S state switching. This is all the most important since no transverse field pulse,



68 CHAPTER 4. PLATELETS DYNAMICS: MICROMAGNETIC SIMULATIONS

-1 0 1
my (image)

650 ps 700 ps

750 ps 800 ps

850 ps 900 ps

950 ps 1000 ps

1050 ps 1100 ps

Figure 4.13: (Colour) Evidence for mode ramification leading to efficient energy dissipation

at long times. As in Fig. 4.11, the three-dimensional surface shown is scaled by the out-of-

plane magnetisation value.
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Figure 4.14: (Colour) Different magnetisation snapshots corresponding to the initial stage

of end domains expulsion through the displacement of top and bottom edge fluctuation

(t = 250 ps). The graphic displays the out-of-plane magnetisation profile along the platelet’s

bottom edge.

possibly imposing a single oriented end domains direction, is any more applied after some

150 ps. It should be stressed that during the process of (top and bottom) end domains

expulsion, no nucleation of micromagnetic structures occurs. In fact, the magnetisation

fluctuations responsible for such end domains expulsion are perfectly continuous and at

no instant in time the maximum (minimum) mz magnetisation values reach the values +1

(-1). This is clearly shown in Fig. 4.14, where different snapshots of the same magnetisa-

tion distribution are given (corresponding to the initial stage of edge domains expulsion),

along with the magnetisation profile of the bottom platelet’s edge (see also Fig. 4.9b). It

should be borne in mind that C and S states almost possess the same energy and one must

ensure that no parasitic transition between these two magnetisation configurations occurs

during switching, which could lead to undesirable creep effects.

In accordance with the MRAM operating principles outlined in the beginning of this

section, memory cell write selectivity relies upon the combined action of two (essentially

orthogonal) current generated field pulses (see Fig. 4.4). As such, for the sequential field

pulse switching experiment described above to be effectively used as a guideline for the



70 CHAPTER 4. PLATELETS DYNAMICS: MICROMAGNETIC SIMULATIONS

-0.6

-0.4

-0.2

0

0.2

0.4

〈m
〉

-1

-0.5

0

0.5

1

〈m
〉

-0.05 0.05 0.15
0

40

80

120

H
y 

(O
e)

〈mx〉

〈my〉

〈mz〉

max mz

(a)

(b)

0 0.5 1 1.5 2 2.5

0.01

0.1

1

10

t (ns)

R
ec

al
cu

la
te

d  
α

(c)

αMS

αdyn

Figure 4.15: Write selectivity demonstration for the transverse field pulse case. The shaded

regions represent the time window where the field pulse has a nonzero value. (a) In-plane

average magnetisation components. (b) Average and maximum out-of-plane magnetisation

values along with the applied field pulse profile (exactly equivalent to the transverse pulse

component in Fig. 4.9). Note the reduced vertical scale. (c) Recalculated α values.

development of reliable MRAM architectures, memory cells subjected to the action of a

sole field pulse must not switch. The predicted behaviour for cells such as considered here

is presented in Fig. 4.15 for the transverse field case (applied field along the y direction).

Although the average y magnetisation curve does display significant oscillations, and the



4.2. PRECESSIONAL SWITCHING 71

-1 0 1
mx (image)

160 ps 390 ps

550 ps 690 ps
-1 0 1

mz (arrows)

Figure 4.16: (Colour) Magnetisation snapshots roughly corresponding to the first oscillation

period of 〈my〉 in Fig. 4.15a (dots).

〈mx〉 value almost reaches zero, the maximum out-of-plane magnetisation values remain

well below the critical value of one. Likewise, the magnetisation snapshots, roughly cor-

responding to the first oscillation of the average magnetisation values (Fig. 4.16), provide

evidence for a spring like behaviour, without the magnetisation distribution ever loosing

a high degree of spatial continuity. Finally, comparison with the sequential field pulse

switching data presented in Figs. 4.9 and 4.10 leads to the following comment. Under

the sole action of the transverse field pulse, neither state switching, nor the nucleation of

the magnetisation fluctuation ultimately responsible for the completion of the switching

process, occur. If these two facts are related, the development of the aforementioned fluc-

tuation is seen to be intimately connected with the action of the longitudinal applied field

pulse (acting on a magnetisation distribution mainly oriented along y on the top and bot-

tom edges), and, as such, the optimised switching experiment given in this section should

exhibit a fairly large tolerance margin to y field pulse values, a probably key property

when dealing with hard axis selectivity.
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Figure 4.17: (Colour) Sequence of magnetisation snapshots corresponding to the curves

presented in Fig. 4.6. Field cutoff instant: 146 ps.

Closing Remarks

Having reached this point in our discussion of precessional magnetisation switching in

submicron-sized platelets it is of some pertinence to discuss in detail the differences between
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Figure 4.18: (Colour) Sequence of magnetisation snapshots corresponding to the curves

presented in Fig. 4.6 and in a one-to-one correspondence with the images given in Fig. 4.17.

The three-dimensional surface is scaled by the out-of-plane magnetisation component and

coloured according to the value of my.

the use of simultaneous and sequential field pulses. The following discussion is based on

Figs. 4.17 and 4.18 displaying sequences of magnetisation snapshots corresponding to the
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non-ringing case in Fig. 4.6 (to be directly compared with Figs. 4.10 and 4.11, respectively).

An immediate remark concerns the nonzero field pulse time windows and the magnitude

of the individual field components. Since an initial longitudinal field components triggers

a counterclockwise magnetisation rotation of the platelet’s core (as seen in Sect. 4.1), the

transverse field component value needs to be high enough in order to compensate this

effect so that an overall clockwise rotation may develop in the first phase of switching.

Due to the enhanced y field, and the additional application of a +x field, a mainly +x-

oriented distribution is reached faster in the simultaneous pulse case (150 ps versus 250 ps

for the shifted pulses simulations). This has nonetheless a cost. The initial presence of

the longitudinal pulse more severely distorts the magnetisation distribution, as can be

plainly seen for the 200 ps snapshot, and induces the development of the necessary out-of-

plane fluctuation, responsible for the final unwinding of the top and bottom edge-pinned

domains, in two locations instead of just one for the case of shifted field pulses. This

seemingly innocuous fact generates, in the end, a fair amount of uncorrelated localised

fluctuations leading to the same overall switching time as in the case of the time shifted

experiment (≈ 500 ps). In addition the development of several fluctuations at both top

and bottom edges more closely resemble situations where micromagnetic structures are

nucleated inside the platelet, therefore possibly restricting the operational margin for field

pulse values. Finally, let us mention that at long times after pulse cutoff the nature of the

still undamped magnetisation fluctuations are essentially the same. This short discussion

might convince the reader of the greater stability attainable via field pulse time shifting.

Thus, hopefully, a more reliable, stable, and controllable switching mechanism may be

achieved.



Chapter 5

Incursion into the Real World

In the previous chapter, the foundations of a precessional-driven magnetisation state

switching in submicron-sized platelets have been laid down. Despite the detailed anal-

ysis of the magnetisation processes taking place, the magnetic system under study still

remained, what we might call, highly immaterial: A non-textured, perfectly defined, rect-

angular platelet immersed in free space. Attempting to handle the intricate features of

the real world raises numerous difficulties. Nonetheless, a (necessarily brief) incursion into

the real world subtleties must at least be attempted. This is done below through both the

modelling of the effects of an underlying Artificial AntiFerromagnetic (AAF) stack on the

Permalloy free layer and the introduction of structural disorder. Indeed, elements with

reduced lateral dimensions will comprise only a limited number of grains with potential

effects on the switching characteristics.

5.1 Sensitivity to Edge Roughness: Selected Examples

The precessional switching mechanism described in Sect. 4.2 relies essentially on the initial

and coherent magnetisation rotation of the element’s core region. In order to more clearly

underline this interdependence, a comparison is made here between a switching experi-

ment in a perfectly defined rectangular element (as used in previous chapters) and two

less than perfect platelets, mimicking the possible outcome of a lithographic process: A

simpler structure where the four corners of the platelet were rounded off and a more real-

istic structure, where edge roughness is supposed to arise from selective grain etch/lift-off

(Figs. 5.1 and 5.2).

Simulations of rectangular elements presenting rounded corners and edge irregularities

75
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Figure 5.1: Comparison between a precessional switching experiment in perfect rectangular

elements and irregular platelets. Field pulses characteristics are displayed on the right and

correspond to the switching experiment in Sect. 4.2.1. The grey regions denote nonzero

field values. (a) Average x magnetisation curves. The bold line corresponds to the per-

fect element. Beware of the expanded vertical scale. (b) Average y magnetisation curves

(vertically shifted for increased visibility).

were performed using the publicly available micromagnetic simulation package OOMMF

(Object Oriented MicroMagnetic Framework) [50] developed at the National Institute for

Standards and Technology (NIST). In order to ensure that both codes provided the exact

same magnetisation motion, a comprehensive analysis of numerical control parameters

was carried out. In particular, spatial discretisation values and integration time steps

were strictly surveyed in test case simulations (for example, the transverse oscillations

experiments described in App. A and the Standard Micromagnetic Problem No. 4 [51]

presented in App. B).

Figure 5.1 displays the average in-plane magnetisation curves during switching for

the three structures considered. In all cases, magnetisation switching is achieved within

the same time window as before (well below the first nanosecond). Sizeable oscillations
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in the y magnetisation component are, however, observed for the non-perfect elements.

Actually, the three simulations were made using the field parameters which induced the

nearly optimised square (and simultaneous) field pulse switching of Fig. 4.6 (see also the

schematic diagrams in Fig. 5.1), and no attempt has therefore been made at the precise

definition of corrects field parameters for each of the irregular platelets. As before, average

magnetisation trajectories along with time-selected magnetisation snapshots allow for a

deeper understanding of the various phases of the switching process. This data is displayed

in Fig. 5.2. As expected, since the initial out-of-plane magnetisation motion is intimately

associated with precession around the demagnetising field, the three curves presented

nearly superpose with one another during the first stage of switching.

The magnetisation distribution images showed correspond to the instant when the

applied field pulses were switched off (t = 146 ps). The centre region of the platelet

is completely reversed and the overall magnetisation distribution remains highly insensi-

tive to the details of edges/corners definitions. Despite the presence of highly irregular

platelets no nucleation of micromagnetic structures occurs, demonstrating the robustness

of precessional-driven magnetisation switching. Only the details of post-switching fluctu-

ations differ. The exact same arguments can be demonstrated to hold valid when consid-

ering intentionally fabricated irregular platelets, such as elongated hexagons, ellipses, and

eye-shaped elements [52].

5.2 The Role of Artificial AntiFerromagnetic Structures

Since in 1995 Heim and Parkin [53] introduced the use of Artificial AntiFerromagnetic

(AAF) stacks as pinned layers in pseudo-spin valve structures, a considerable amount

of effort has been put into the study of such structures (sometimes also referred to as

Synthetic AntiFerromagnets). The driving force behind such developments is the search

for both pinned layer stability and a reduction in the stray field (magnetostatic coupling)

sensed by the free layer (besides thermal stability, which will not be further evoked here).

The goal of this section is not so much a detailed study of the dynamic behaviour of

AAF stacks but their possible influence on the switching characteristics of the free layer.

Throughout the following pages the discussion will evolve always towards higher degrees

of complexity, especially through the introduction of structural disorder.

The choice of Co/Ru/Co stacks was made due to the possibility of achieving large
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Figure 5.2: (Colour) Average magnetisation trajectories corresponding to the parameters in

Fig. 5.1. The curves shown correspond to a duration of ≈ 0.5 ns. Magnetisation snapshots

were taken at the same instant in time (field cutoff) and provide evidence for essentially the

same switching mechanism: Inner core magnetisation reversal, which revealed itself very

insensitive to edge and/or corners roughnesses.
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values of interlayer antiferromagnetic exchange coupling, for a considerable wide range of

Ru thickness [54]. Symmetric AAF stacks were considered, where both Co layers were

3 nm thick and the Ru was 0.7 nm. For such values of Ru thickness, exchange coupling

values as large as 1 erg/cc have been reported [55]. Although the thickness of the Ru

spacer defines the strength of the coupling between the two Co layers, this interaction has

no intrinsic in-plane preferential direction. This in-plane preferential direction is usually

imposed through exchange biasing the AAF stack with an antiferromagnetic layer. Here,

however, no exchange bias layer was modelled and the AAF structure was simply cut down

to the usual 2:1 aspect ratio, having the largest dimension of 500 nm.

5.2.1 AAF Stability under Static Fields

The use of AAF structures as pinned layers requires field stability. Thus, a static field

was first applied along both the longitudinal and transverse (in-plane) directions. Data is

shown in Fig. 5.3 for a Co (3 nm)/Ru (0.7 nm)/Co (3 nm) symmetric stack in an initial,

fully antiparallel, double S State configuration. Up to 150 Oe field values, the average

transverse magnetisation components only weakly depend on the applied field. The top

Co layer (Fig. 5.3c), nonetheless, is slightly more responsive to both the x- and y-directed

fields. This may be explained by the fact that the two Co layers are not symmetric with

respect to the applied fields due to the different relative orientations of the edge closure

domains. In the following, the assumption of the AAF stack’s immobility will be made

due first, to the relative insensitivity to field mentioned above and, additionally, to the

fact that this sensitivity would be further reduced in the case of an AF-pinned AAF stack.

The fully antiparallel double S state configuration in the AAF stack is not only im-

posed by the strong interlayer exchange coupling across the Ru spacer but is also favoured

through a charge compensation phenomenon between both Co layers (see Fig. 5.4a).

Nonetheless, due to the generally weak interlayer exchange coupling through the spacer

separating the free and pinned layer (see Fig. 5.4b), four possibilities are available for

the relative orientation of magnetisation in the free layer relative to the AAF stack. In

order to investigate the minimum energy configuration for this three-layer structure, the

remanent magnetisation distributions were computed for the four possible free layer mag-

netisation orientations, as shown in Fig. 5.4c. Since the magnetisation distribution in

the AAF stack remained unchanged and that of the free layer correspond to symmetry

reflections along the x and y axes, the only possible energy differences necessarily arise
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Figure 5.3: Field stability of an AAF stack. The magnetic parameters used for Co were

Ms = 1400 emu/cc, A = 2 × 10−6 erg/cm. No anisotropy contributions were considered.

(a) Transverse field. (b) Longitudinal field. (c) Schematic diagram of the remanent mag-

netisation distributions in the AAF stack.

from the magnetostatic coupling (Zeeman type) between the underlying AAF stack and

the topmost magnetic layer, namely

−
∫

m ·
(
h(1)

stray + h(2)
stray

)
dr , (5.1)

where h(i)
stray are seen to behave as external applied fields on the free layer. These values

are given Fig. 5.4c in reduced units for a 5 nm thick Permalloy layer. A fully antiparallel

three-layer stack is seen to be the lowest energy configuration (the corresponding free layer

magnetisation distribution is also shown in Fig. 5.4c). Although the basic features of the

S state distributions on both the AAF layers and the free Permalloy layer are essentially

equivalent, due to charge compensation across the Ru spacer, magnetisation configurations

on the Co layers have slightly more symmetric edge closure domains.
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Figure 5.4: (Colour) Determination of the remanent distributions in a three-layer stack.

(a) Remanent magnetisation distribution in both Co layer composing the AAF stack. (b)

Schematics of the system considered. (c) Values of the magnetostatic coupling energy for

unit volume and for the four different magnetisation states in the free Permalloy layer (5 nm

thick).

5.2.2 Introducing Structural Disorder

The effects of structural disorder are next considered. Both Co layers were considered as

fcc with a cubic anisotropy value of K1 = −1.0 × 106 erg/cm3. Inside each grain a cubic
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Figure 5.5: (Colour) Remanent x magnetisation component distribution in a textured AAF

stack. (a) In-plane magnetisation distribution superimposed on the grain structure mod-

elled. (b) Transverse magnetisation distribution (in colour) along with a three-dimensional

mapping of the out-of-plane (z) magnetisation values. (c) Schematic diagram of the tex-

tured AAF stack.

anisotropy with a three-dimensional random orientation was assumed. Each Co layer was

decomposed in an ensemble of grains having an average diameter of approximately 100 Å,

and the anisotropy axes were randomly oriented in space. Figure 5.5 shows a schematic

representation of the AAF stack considered and the remanent magnetisation distribution.

Direct comparison with the remanent magnetisation distributions of Fig. 5.4 for non-

textured Co layers reveals the influence of the structural disorder introduced. Apart from

small magnetisation fluctuations spreading through the whole of the platelet, both in the

plane (Fig. 5.5a) and out of the plane (Fig. 5.5b), one immediately observes the strong
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Figure 5.6: (Colour) Surface mapping of the AFF’s stray field. (a)–(c) Field components.

Both the colour code and the three-dimensional surface mapping correspond to the indicated

component. (d) Stack schematics. (e)–(f) Remanent free Permalloy configuration. Note

the highly expanded scale used for the mz snapshot.

reduction in size of the edge closure domains of both Co layers S state. This is due to the

interlayer magnetostatic coupling between the two AAF layers, but also to their irregular

shape comes as a consequence of the strong random anisotropy existing inside each grain.

Quantifying the stray field sensed by the free layer on top of the AAF stack depicted

in Fig. 5.5 comes as the next question. Given the system presented in Fig. 5.5, the
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components of such stray field, evaluated at a distance of 3.2 nm, are displayed in Figs. 5.6a

through 5.6c. This distance corresponds to the centre (in thickness) of a 5 nm thick layer

separated by a 0.7 nm spacer from the AAF stack (Fig. 5.6d). At the edges of the

platelet, large stray field values can be present, the magnitude of which can exceed 400 Oe

for the material parameters and the geometry considered. Despite these high values,

field amplitude decreases rapidly towards the interior of the magnetic element. At only

10 nm from the lateral surfaces (i.e. essentially two exchange lengths in Permalloy), the

field amplitude is reduced in magnitude to values comprised between 30 and 50 Oe. Field

fluctuations inside the free platelet arise from the magnetic disorder introduced into the Co

layers of the AAF stack (compare the spatial length scale of the out-of-plane magnetisation

fluctuations in Fig. 5.5b with the mapped surfaces in Figs 5.6a-c).

The effects of such a magnetic field distribution on the remanent magnetisation config-

uration of the free Permalloy layer (located at the same height) is presented in Figs. 5.6e

and 5.6f. The free Permalloy layer is now modelled together with its associated tex-

ture, different from that of the Co layers. This choice was suggested by the fact that

an amorphous oxide layer would separate the free layer from the AAF stack in tunnel

junctions. The coherency of the grain structure would thus not be maintained. A cu-

bic anisotropy was considered, with axes being randomly distributed from grain to grain

(K1 = −5.0 × 103 erg/cm3). Surprisingly enough, the magnetisation state is almost com-

pletely unaffected by the presence of the AAF’s stray field. This is due to the softness of

Permalloy, large exchange constants smoothing completely any small deviations from the

remanent (nil stray field) configuration (note the highly expanded scale in Fig. 5.6f). In

particular, magnetisation is essentially in an S state defined in the film plane. The maxi-

mum value of mz in the free layer is 0.0345, corresponding approximately to an angle of 2◦.

This out-of-plane magnetisation components must necessarily have developed as a reaction

to the sensed stray field. This implies that small magnetisation rearrangements generate

an internal effective field that almost perfectly counterpoise the sensed stray field. In or-

der to demonstrate this hypothesis, the z components of both the internal effective field

and the sensed stray field are plotted in Fig. 5.7a-b. The choice of the sole z component

representation can easily be justified. Since the out-of-plane magnetisation component

are actually very small, i.e. the magnetisation essentially lies on the platelet plane, the z

component of the effective field, is actually at an almost perpendicular angle with respect

to the magnetisation. It, therefore, gives rise to a nonzero torque on m. Visual inspection
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Figure 5.7: Comparison between the z values of stray field (a) and the internal effective

field in the free Permalloy layer (b). (c) Effective field contributions along the shorter right

edge of the platelet. Grey lines represent grain boundaries in the Permalloy layer.

indicates that both field distributions almost perfectly cancel each other out.

To gain a better understanding of this compensation effect (especially near the edges

of the platelet), a cut was made at the abscissa value of 498 nm, corresponding to the last

magnetisation grid point in simulations (see App. A). Such data, conveniently separated

into effective field contributions (exchange plus demagnetising), is displayed in Fig. 5.7c.

Apart from the aforementioned field compensation, and perhaps contrary to common

sense knowledge, exchange contributions to the effective field provide the largest reaction
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Figure 5.8: Comparison between the results of an optimised switching experiment in a non-

textured element (thin lines) and the inhomogeneous Permalloy platelet immersed in the

stray field arising from the disordered AAF structure in Fig. 5.5 (thick lines). The field

pulse profiles are shown in the inset. The shaded area corresponds to nonzero field values.

to the presence of the very localised AAF-generated external field. Similar effects of

internal field compensation, essentially governed by exchange interactions, are known to

occur when dealing with micromagnetic singularities at edges and/or corners of perfectly

defined rectangular (or three-dimensional parallepipedical) elements [56]. Again we should

stress the fact that such high field values are the result of extremely small magnetisation

deviations from equilibrium positions.

In closing this chapter, we attempt a quantification of the repercussions of these local

magnetisation rearrangements on the switching characteristics of a textured submicron

platelet. A straightforward comparison between the optimised switching experiment of

Sect. 4.2.2 (time-shifted field pulses and a non-textured Permalloy layer) and the results

obtained when considering a textured Permalloy layer subject to the stray field of the

underlying AAF stack is exhibited in Fig. 5.8. Clearly, the switching process remains

essentially unchanged even when due account is made for the inhomogeneous stray field

originating from the AAF stack and for the possible microstructure of the free Permalloy

layer. An overall final remark can be made when focusing on the time window following

field application. The average y magnetisation component for the disordered AAF coupled

element seems to relax faster than that of the perfect isolated element. This can probably

be accounted for by considering the dephasing of the local magnetisation fluctuations due
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to grain-induced disorder.

Summary

A description of the real world intricacies was attempted in this chapter. It focused on

determining the influence of the following parameters on the precessional-driven magneti-

sation state switching described in the previous chapter:

• Edge roughness.

• Artificial AntiFerromagnetic stacks’ coupling and structural disorder.

As a conclusion we can state that both the above factors produce a limited effect on the

switching properties of the studied platelets. This is due to the following reasons. First,

considering edge roughness, the quasi-coherent rotation mode triggered in the platelets

inner region remains highly insensitive to the details of edge definitions. Second, due

essentially to the softness of the Permalloy layers considered in this work, stray fields

originating from a pinned AAF layer are swiftly screened off. Similarly, the effects of

structural disorder (random anisotropy axes inside each ferromagnetic grain), modify only

the details of post-switching oscillations, and this on a reduced scale.





Perspectives

As concluding remarks to this thesis’ work, several additional research paths might be con-

sidered. Apart from detailed technical discussions regarding prototype validation, more

fundamental insights into the nature of coherent precessional-driven magnetisation switch-

ing can be attained when considering the following topics.

If the continuing reduction of magnetic devices’ lateral dimensions can only be pro-

pitious to the reinforcement of coherent magnetisation switching events, the details of

small-scale magnetisation structures, and their associated dynamics, shall bear an increas-

ingly large weight in the overall description of magnetisation motion. In particular, the

ratio of lateral surfaces to the element’s volume will continue to increase, and the influ-

ence of surface effects accordingly. Therefore, the damping characteristics of boundary

surfaces might start to play a significant role in the detailed features of energy dissipation

in the aftermath of switching. In this context, the work of Bailey and coworkers [57] on

the control of magnetisation dynamics through the tailoring of the volume damping pa-

rameter should be mentioned. A precise understanding of the energy damping processes

taking place during post-switching magnetisation oscillations is still an open research topic

and control of localised out-of-plane magnetisation excursions may promote a really faster

post-switching damping.

Micromagnetic simulations have effectively paved the way for the first experimental

setups aimed at a time-monitoring of coherent magnetisation dynamics in submicron-

sized platelets and several research groups are now in a position to produce the needed

experimental feedback to proposed switching mechanisms and their characteristics [17, 18].

A fruitful dialogue is now starting between the worlds of simulations and experiments which

should prove beneficial to both.

In a rather different register, following the pioneering works of Berger [58] and Slon-

czewski [59], recent experimental data have demonstrated the feasibility of inducing mag-
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netisation reversal by the injection of a spin-polarised current through a thin ferromag-

netic layer (for the latest references see [60, 61, 62]). Unfortunately, they all apply to

the quasi-static regime. As for simulation data, only in the macrospin approximation has

an attempt been made at exploring the dynamics of spin-injection-mediated magnetisa-

tion switching [63]. During this thesis’ work, we started to expand the scope of these

preliminary works and tackle the question of spin injection dynamics in inhomogeneous

magnetisation distributions [64]. In a low current regime [to be published], magnetisa-

tion switching is found to occur after the development of highly coherent magnetisation

oscillations arising from what could be called a pumping mechanism under the combined

action of the spin injection torque and demagnetising effects due to out-of-plane excur-

sions. Again, the role of precessional-driven motion is essential in the characterisation of

magnetisation dynamics.

As lateral dimensions continue to be decreased, a considerable amount of attention will

no doubt start to be paid to the effects of thermal fluctuations. This will perhaps, from a

strictly numerical micromagnetics’ viewpoint, be the next major direction where to bend

all one’s attention.
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Appendix A

Numerical Methods

Throughout this thesis’ chapters the reader has been frequently directed to the appendices

with the aim of allowing for the main text to focus on the physical contents embedded

in micromagnetism, rather than on its numerical aspects. In the following, a coherent,

although brief, account of algorithm implementation will be given. We shall, however,

not be concerned with an exhaustive account of numerical procedures, but rather with

the innovative contributions developed during this work. These are essentially centred

around the quantification of time domain errors associated with the accuracy of numerical

integration schemes for the LLG equation, along with the assertion of the physical validity

of micromagnetic simulation data.

A.1 Computational Schemes

Discussions on the validity of numerical micromagnetic simulations invariably aver the

prime role played by both length and time scales. In this respect, the question of edge sin-

gularities in static micromagnetics proves emblematic [65]. When considering a magnetic

body where sharp edges or corners exist the demagnetising field at the surfaces may become

infinite. Such diverging demagnetising fields were found to be compensated by equally di-

verging exchange fields. This apparent paradox of diverging exchange fields produced by

smooth magnetisation distributions has been solved by Thiaville and coworkers [56] in a

two- and three-dimensional analytical study of corner singularities. As a crude summary

of these works we can state the following: The balancing of diverging fields is done at a

length scale corresponding to the familiar exchange length Λ. Therefore, by imposing spa-

tial discretisation values smaller than the exchange length, correct numerical calculations

91



92 APPENDIX A. NUMERICAL METHODS

x0

aa / 2

λrim

(a)

(b)

a
a

≈ Λ

x

yz
λbottom

a
a

(c)

x

y

×

× ×

≈ Λ

n̂ n̂

×
x1 x2 x3

Figure A.1: Two-dimensional grid used in simulations. Calculation points are explicitly

represented by dots (note that none belong to boundary surfaces).

are possible as long as one avoids the explicit evaluation of exchange and magnetostatic

fields at sharp edges or corners (either two- or three-dimensional).

It seems, therefore, a harsh task to conciliate the correct imposition of the bound-

ary conditions associated with the micromagnetic governing equations (see Sects. 1.2.2

and 1.2.3) and the impossibility of explicitly evaluating effective field components at the

very same surfaces. When considering thin magnetic platelets (restricted in shape to per-

fectly defined rectangles), the solution proposed in this work relies on the partitioning of

the volume into a regular array of parallelepiped cells (see Fig. A.1). Due to the small

thickness values considered in this work, a single layer of volume cells was solely needed

in the thickness. Magnetisation grid points are located at the geometric centre of such

cells, in a one-to-one correspondence, so that all are strictly in the interior of the platelet.

In addition, such a grid will also define the evaluation locus for all volume or surface

contributions to the effective field. In this way, every magnetisation point is subjected

to the exactly evaluated effective field at the same spatial location, which corresponds

to what might be called a grid-field approach. In particular, no average of effective field



A.1. COMPUTATIONAL SCHEMES 93

components is made over the cell volumes. Although no magnetisation grid points belong

to the surfaces of the platelet, the correct imposition of boundary constraints is attained

through a local fourth-order Taylor expansion of m, as shown in the following section.

The question of determining if grid-field approaches are better suited for an accurate

description of magnetisation dynamics still remains an open question. Only detailed com-

parison between numerical codes will no doubt elucidate this question. Here, we want only

to underline the consistency of such methods.

A.1.1 Statics

Static micromagnetic calculations rely on solving Brown’s equations. Using the set of

reduced (dimensionless) units introduced in Sect. 1.3, in their most simplest form (no

surface interactions), Brown’s equations read

m × heff = 0 with
∂m
∂n̂

= 0 , (A.1)

heff = Λ2
(
∇2m

)
+ hd + ha −

δwani

δm
. (A.2)

The effective field comprises contributions from exchange, demagnetising, applied and

anisotropy fields. In the present work, no provision has been made for magnetostriction-

related contributions.

In a grid-field approach, the evaluation of exchange interactions requires the compu-

tation of the second-order spatial derivatives of m. In finite-difference type methods,

low-order expansions of m are known to provide inaccurate numerical approximations of

spatial magnetisation derivatives [66]. In this work, following on with previous implemen-

tations [66], the evaluation of second-order spatial derivatives relies on a local fourth-order

Taylor expansion of m. Consider a one-dimensional scalar function f . Around the grid

point i, its Taylor expansion along x, and that of its first derivative, are given by

f(xj) =
∞∑

k=0

(xj − xi)k

k!
f (k)(xi) , (A.3)

f (1)(xj) =
∞∑

k=1

(xj − xi)k−1

(k − 1)!
f (k)(xi) . (A.4)

For an interior grid point i having two nearest-neighbours on each side, straightforward
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use of Eq. (A.3) yields the matrix equation



−2a (−2a)2 1
2! (−2a)3 1

3! (−2a)4 1
4!

−a (−a)2 1
2! (−a)3 1

3! (−a)4 1
4!

a (a)2 1
2! (a)3 1

3! (a)4 1
4!

2a (2a)2 1
2! (2a)3 1

3! (2a)4 1
4!



·




f (1)(xi)

f (2)(xi)

f (3)(xi)

f (4)(xi)




=




f(xi−2) − f(xi)

f(xi−1) − f(xi)

f(xi+1) − f(xi)

f(xi+2) − f(xi)




.

(A.5)

The equation above can be immediately solved for the f (k)(xi), obtaining therefore the first,

second, third, and fourth derivatives of f at the grid point i. These general expressions

can be directly employed in determining the spatial derivatives, along x and y, of every

magnetisation component by simply replacing f by mx, my, or mz. The gradient of m

along z is here nil by construction (see Fig. A.1). In particular, the general form of the

second derivative reads

f (2)(xi) =
−f(xi−2) + 16f(xi−1) − 30f(xi) + 16f(xi+1) − f(xi+2)

12a2
. (A.6)

For grid points sufficiently near the surfaces, such as those with the indices 1 or 2 in

Fig. A.1a, Eq. (A.5) cannot be used since at least one grid point will be missing on the

left of point i. The special nature of near-surface grid points may, however, be utilised

in enforcing the boundary conditions associated with Brown’s equations. Although the

working principle of the method can be found in the work of Labrune and Miltat [67],

explicit expressions of such calculation will be reproduced here in order to stress the fact

that magnetisation points are now defined at the cell’s centre. Supplementary equations

must be found to replace the missing ones. These are to be found through the use of

Eq. (A.4). For i = 2, Eq. (A.5) becomes



1 (−3a/2)1

1!
(−3a/2)2

2!
(−3a/2)3

3!

−a (−a)2

2!
(−a)3

3!
(−a)4

4!

a (a)2

2!
(a)3

3!
(a)4

4!

2a (2a)2

2!
(2a)3

3!
(2a)4

4!



·




f (1)(x2)

f (2)(x2)

f (3)(x2)

f (4)(x2)




=




f (1)(x0)

f(x1) − f(x2)

f(x3) − f(x2)

f(x4) − f(x2)




, (A.7)

while for i = 1 only three equations must be considered, yielding


1 (−a/2)1

1!
(−a/2)2

2!

(a)
1

(a)2

2!
(a)3

3!

(2a)
1

(2a)2

2!
(2a)3

3!


 ·




f (1)(x1)

f (2)(x1)

f (3)(x1)


 =




f (1)(x0)

f(x2) − f(x1)

f(x3) − f(x1)


 . (A.8)
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In particular, the expression for the second derivative becomes then

f (2)(x1) = −24
23

f (1)(x0)
a

+
−25f(x1) + 26f(x2) − f(x3)

12a2
. (A.9)

In Eqs. (A.7) and (A.8), the boundary condition in Brown’s equations is explicitly

enforced when evaluating exchange interactions even if no magnetisation grid point lies

on the surface. The equations above are directly usable in the presence of interlayer

exchange interactions (or more generally any surface anisotropy contribution), through

the direct evaluation of f (1)(x0) in the equations above.

In accordance with the grid-field method outlined in the introductory text of this

section, the magnetostatic field is evaluated pointwise, at the centre of each volume cell,

through a direct use of

hd(r) =
1
4π

[∫
Ω

(r − r′)ρ(r′)
|r − r′|3

dr′ +
∫

Γ

(r − r′)λ(r′)
|r − r′|3

dr′
]

, (A.10)

with

ρ(r′) = −∇ · m = −
(

∂mx

∂x
+

∂my

∂y

)
, (A.11)

λ(r′) = m · n̂ , (A.12)

the volume and surface magnetic charges, respectively. Let G denote the Green’s function

associated with Poisson’s equation

G(r − r′) =
1
4π

1
|r − r′| . (A.13)

Equation (A.10) may be easily understood as a convolution product of the kernel function

∇r′G and both the volume and surface charges

hd(r) =
[∇r′G(r − r′) ⊗ ρ(r′) + ∇r′G(r − r′) ⊗ λ(r′)

]
. (A.14)

The convolution theorem provides for an efficient way of calculating the convolution prod-

uct above. Let F denote the Fourier transform and F−1 its inverse. The convolution

product ∇r′G ⊗ ρ can be calculated by

∇r′G ⊗ ρ = F−1(F(∇r′G)F(ρ)) . (A.15)

The fourth-order expansions of in-plane components of magnetisation, along both x and

y, needed in the evaluation of exchange interactions, also provide for the values of the first-

order spatial derivatives of m at every grid point i. The volume magnetic charges ρ(r′) are
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thus readily available. These values are assumed to be constant inside the corresponding

volume cell. The use of a single layer of volume cells, and, accordingly, of magnetisation

points in the thickness, immediately provides for the values of top and bottom surface

magnetic charges (λtop and λbottom). However, the evaluation of rim charges (λrim) requires

the knowledge of m at lateral surfaces, which are not immediately available due to the

mesh used (see Figs. A.1b and A.1c). These are to be found through the use, again, of

the aforementioned expansions, consistent with boundary conditions. The values of λtop,

λbottom, and λrim are considered as constants over the corresponding cell surfaces.

Following the grid-field approach outlined above, the discretised equivalent of Eq. (A.10),

or Eq. (A.14), may be written as the discrete convolution products

hd(ri) =
∑

j

ρ(rj)
∫

Ωcell

∇r′G(ri − r′)dr′ +
∑

k

λ(rk)
∫

Γ
∇r′G(ri − r′)dr′ . (A.16)

Fast Fourier Transform (FFT) methods can therefore be implemented in order to speed-

up the evaluation of the demagnetising fields [68, 69, 70, 71]. The use of such techniques

reduce the number of computations needed for N grid points from 2N2 to 2N log2 N ,

where log2 is the base-2 logarithm [72].

Applied and anisotropy field contributions to heff (or, for that matter, stray fields),

being strictly local, are straightforwardly implemented through an explicit evaluation of

analytical expressions at every grid point.

When dealing with static problems, following the work of Trouilloud and Miltat [66],

which proved to be a significant improvement over the original LaBonte calculation [73],

magnetisation rotation towards the direction of the effective field is performed at each

computational cycle through a discrete overdamped LLG equation

∆m = −α′[m × (m × heff)] . (A.17)

The damping parameter α′ does not necessarily posses any physical meaning. Its use is here

that of an adjustable parameter allowing for the swiftest possible convergence rate. Values

typically range from 0.1 to 0.5. Note that, when converging low remanence magnetisation

configurations in very thin films, calculations frequently diverge for α′ values greater than

0.25. Although Eq. (A.17) guarantees that m ·∆m ≡ 0 this condition is only equivalent to

‖m‖ ≡ 1 to first order in m. Therefore, after each rotation step, magnetisation vectors at
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each grid point are explicitly renormalised. Convergence is achieved, and the calculation

stopped, when the maximum value of the reduced torque’s norm drops below predefined

values, usually

max ‖m × heff‖ < 10−6 . (A.18)

Nowhere, during a full algorithm cycle, does one requires the explicit evaluation of

specific energy terms. For the single purpose of monitoring, the different contributions to

the energy were calculated using a very simple approach. Since every contribution to the

effective field is explicitly evaluated at every magnetisation grid point, using the energy

density expressions presented in Chap. 1, the pointwise energy density may immediately

be found. This value is assumed to be a constant throughout the corresponding cell

volume leading to the total energy values given in the main text. Even though our energy

evaluation method might appear crude, Eq. (A.18) is in most cases supplemented by a

close monitoring of energy values: Only when each energy component becomes sufficiently

stable is convergence attained.

Validation

The validation of micromagnetic codes seems to elude a straightforward set of procedures.

Apart from the direct comparison of total energy values, or effective field values at selected

locations (for magnetisation distributions allowing for an analytical evaluation of energy or

fields), the only generally agreed procedure is based on some sort of asymptotic analysis, in

particular as a function of decreasing mesh parameters. In so doing precision is replaced

by accuracy. The reader should not be deceived by this statement. Indeed, what are

the guarantees that a correct energy evaluation for a uniformly magnetised body should

produce the same degree of precision when the magnetisation distribution becomes highly

non-uniform? Generally, the answer is not known a priori.

Plain common sense is almost the most reliable procedure available: For how can we

pretend to an accurate description of a given micromagnetic distribution (e.g. a vortex) if

the mesh spacing value is not beyond the characteristic value of micromagnetic structures,

i.e. the exchange length Λ in soft magnetic materials (see Fig. A.2)? In Fig. A.3, we

present the convergence analysis of the different energy contributions as a function of

grid spacing for a Permalloy platelet in an initial S state. This set of results presents a

clear plateau in the limit of an infinitely small grid spacing. A similar behaviour (which
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Figure A.2: (Colour) Vortex definition in a square, 10 nm thick, Permalloy platelet. (a) Full

details of the out-of-plane magnetisation distribution are obtained for mesh spacing values

smaller than the characteristic length of the material (exchange length Λ) in contrast with

(b). Note that the vectors displayed do not correspond to actual mesh points.
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Figure A.3: Static energy convergence versus grid spacing for an S state magnetisation

distribution in a Permalloy platelet of dimensions 500 × 250 × 5 nm3. The lines shown are

just guides to the eye.

looks reasonable when ∆x tends to zero) has also been observed by Rave and Hubert [39].

It seems, nevertheless, that averaging procedures do not always comply with this rule of

thumb, and energy convergence versus grid spacing can, in some cases, be a linear function

of the spatial discretisation values used (see App. B).
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A.1.2 Dynamics

Magnetisation motion is commonly assumed to derive from the LLG equation (Sect. 1.2.3).

Using the reduced (dimensionless) system of units introduced in Sect. 1.3, this equation

reads

(1 + α2)
∂m
∂τ

= −(m × heff) − α [m × (m × heff)] . (A.19)

As already stressed in Chap. 1, although not commonly stated in the literature, Brown’s

boundary constraint on m remains valid for the LLG equation: The same variational

procedures used in obtaining Eqs. (1.40) and (1.41) are employed when deriving the gy-

romagnetic equations (and the LLG equation, accordingly) from Hamilton’s principle. In

the framework of dynamical micromagnetics, the constraint of stationary magnetisation

at free surfaces, is fully implemented through the procedures described in Sect. A.1.1.

Equation (A.19) represents a set of stiff differential equations, especially in the limit

of small α values [74, 75]. Therefore, addressing the issue of numerical stability lead us to

the adoption of a Crank-Nicolson integration scheme [72]. In its most simple expression

this numerical integration method can be viewed as a centred average between a forward

(explicit) and a backward (implicit) differencing schemes.

Setting h′
eff = heff + α (m × heff) the LLG equation simply reads

(1 + α2)
∂m
∂τ

= −
(
m × h′

eff

)
. (A.20)

In a forward scheme the right-hand side is evaluated at τ , while for a backward scheme

the evaluation is made at τ + ∆τ , namely

Forward (1 + α2)
∆m
∆τ

= −
(
m × h′

eff

)
τ

, (A.21)

Backward (1 + α2)
∆m
∆τ

= −
(
m × h′

eff

)
τ+∆τ

, (A.22)

with ∆m = mτ+∆τ − mτ . In both cases, the time derivative term is simply represented

by a forward Euler differencing, a designation employed only for time derivatives. Since

Eq. (A.19) preserves the norm of m at every instant τ , to first-order, the discretised

expressions above should comply with m · ∆m = 0, namely

−m ·
(
m × h′

eff

)
= 0 , (A.23)

−
[
m ·

(
∆m × h′

eff

)
+ m ·

(
m × ∆h′

eff

)
+ m ·

(
m × h′

eff

)]
= 0 . (A.24)
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The last two terms on the left-hand side of the last equation are, by definition, nil. Follow-

ing the arguments of Nakatani and coworkers [76], all discretised terms not satisfying the

first-order constraint m · ∆m = 0, i.e. (∆m × h′
eff) will be excluded from the integration

scheme. Accordingly, a numerical implementation of Eq. (A.19) may be written as

(1 + α2)
∆m
∆τ

= −1
2

(
2m × h′

eff + m × ∆h′
eff

)
= −m × h′

eff − 1
2
m × ∆h′

eff .

(A.25)

Expanding the double vector products in the equation above, and making use of the norm

constraint m · m ≡ 1 and of the vector triple product identity(a), eventually leads to

[
1 + α2

∆τ
+

1
2
α(m · heff)

]
∆m +

1
2
D(∆heff) = −D(heff) , (A.26)

with D(u) = m×u+α [(m · u)m − u](b). By expressing ∆heff as a set of linear equations

in ∆m, Eq. (A.26) can be stated in the condensed matrix form

A · ∆m = b , (A.27)

where all implicit contributions to the integration scheme are included in A and b is simply

the discretised version of −D(heff).

Since all the explicit contributions of Eq. (A.19) (right-hand side) are included in the

vector b (which is evaluated using no other approximations than those arising from the

spatial discretisation procedures employed), the contents of the matrix A are uniquely

dependent upon mathematical considerations. In fact, although explicit schemes are in

reality poor numerical procedures, leading, as we shall see, to an almost immediate numer-

ical breakdown, they do contain all the physics described by the LLG equation. Therefore,

extensions made to this numerical integration scheme are simply a matter of mathematical

convenience. In particular, we are at liberty to drop particular discretised terms, as done

in [76], or, indeed, as shall be seen in the following, to include only selected contributions

to the effective field.

Of particular importance is the handling of demagnetising interactions. Since hd at

any given point r depends on the whole of the magnetic body, the complete inclusion

of demagnetising interactions in the implicit terms in Eq. (A.26) would result in a fully

populated matrix. Even for a reasonably small problem involving 127 × 63 grid points,

(a)A × (B × C) = B(A · C) − C(A · B)
(b)D(u) = m × u + α [(m · u)m − u] = m × u + α [m × (m × u)]
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this would amount to the storing (in native 64-bit machines) of a matrix of more than 4

GB (not to speak of the cost of inverting it at each calculation time step)! Choices must

clearly be made. In general, a reduced number of nearest-neighbours is taken as acting on

a given magnetisation grid point. This generally leads to the assembling of a banded sparse

matrix structure, especially when sequentially numbering the magnetisation grid points

componentwise (see Fig. A.4). Again, let us stress the solely mathematical meaning of the

inclusion (or removing) of terms. In addition, from a physical viewpoint, the inclusion of

demagnetising terms tends to favour a strong magnetisation antiparallel alignment between

neighbouring spins.

A further simplification derives from considering just exchange contributions when as-

sembling the matrix A. The sparse matrix structure arising from the sole inclusion of

exchange contributions is shown in Fig. A.4. For each block corresponding to the three

components of magnetisation, the matrix A displays a highly regular band structure. In-

deed, exchange interactions couple only those grid locations lying on orthogonal directions

and being first or second nearest-neighbours. Due to the fact that the correct boundary

conditions were explicitly included when evaluation second-order derivatives at grid points

near the edges, the given matrix is, unfortunately, not symmetric (comparing Eqs. (A.6)

and (A.9) immediately displays the symmetry breaking between, for instance, grid loca-

tions 1 and 3). Accordingly, a Generalised Minimum RESidual (GMRES) method was

used at each iteration step to solve for ∆m in Eq. (A.27) (see [72] and original references

therein). Full use of the sparse nature of A has therefore been made, since the GMRES

method only relies on matrix-vector multiplication operations.

Although, here, a detailed analysis of the spectral properties of the matrix A will not

be made, it is worthwhile to further discuss an additional point. If the nonzero structure

of A has been given in Fig. A.4, nothing has been said about the values there stored.

Surprisingly enough, the main diagonal entries are consistently three orders of magnitude

higher than any off-diagonal values. Indeed, main diagonal entries are almost completely

determined by the value of the term (1 + α2)/∆τ in Eq. (A.26) arising from the explicit

contribution to the Crank-Nicolson scheme, which, for the small α values considered is

simply the inverse of the time step value used. Implicit contributions, even for the main

diagonal entries, stand only for small corrections. Nevertheless, they do provide for the

necessary stabilisation of the iterative procedure (vide infra). The question remains as

to determine if the self-contributions (those corresponding to the main diagonal entries)



102 APPENDIX A. NUMERICAL METHODS

mx (1:Nx×Ny) my (1:Nx×Ny) mz (1:Nx×Ny)

m
x 
(1

:N
x×

N
y)

m
y 
(1

:N
x×

N
y)

m
z 
(1

:N
x×

N
y)

mx (1:Nx×Ny)

m
x 
(1

:N
x×

N
y)

i-2 , i-1 , i, i+1, i+2

i+Nx

i+2Nx

i+Nx

i+2Nx

i i+1 i+2

Figure A.4: Sparse matrix structure arising from the sole inclusion of exchange interactions

in the implicit contributions to the Crank-Nicolson scheme. Nx and Ny denote the number

of grid points along x and y, respectively.

deriving from the implicit terms are actually capable of producing the same degree of

stabilisation. If such was to be the case, then only the main diagonal needs to be taken

into account, therefore notably speeding up the overall calculation of ∆m, since solving

Eq. (A.27) would be trivial. This is still to be further explored.
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von Neumann Stability Analysis

Ensuring numerical stability comes, nonetheless, at a cost, namely the trade-off between

stability and both precision and accuracy. If numerical precision is nowadays easily guar-

anteed through the use of widely available 64-bit computational resources, accuracy must

still be controlled. In particular, the allowed time steps values must be established. Since,

within their stability limits, explicit integration schemes are known to maintain a high

level of accuracy, their stability analysis should provide for a lower bound for the maxi-

mum values of ∆t. Since the onset of numerical instabilities in micromagnetic calculations

occurs over small length scales, and this even for highly uniform magnetisation distribu-

tions, the use of simple, albeit effective, local stability analyses seems justified. These are

due to von Neumann (see [72] and [77]).

In a direct analogy with the stability analysis of diffusion equations, the Laplacian

operator representing exchange interactions is usually regarded as the most likely source

of numerical instabilities. Considerer for simplicity the one-dimensional linearised LLG

equation governed by exchange. In the limit of small perturbations from a uniformly

magnetised distribution aligned along the z axis, first-order expressions may be written

for m and hexc as

m =




mx

my

1


 and hexc = Λ2




∇2mx

∇2my

0


 . (A.28)

The linearised LLG equation then becomes

(
1 + α2

) ∂m
∂τ

= Λ2




α∇2mx + ∇2my

−∇2mx + α∇2my

0


 . (A.29)

Introducing the complex variable u = mx+ımy, conveniently allows to rewrite the equation

above as (
1 + α2

) ∂u

∂τ
= Λ2 (α − ı)∇2u , (A.30)

which is just a diffusion equation with a constant (albeit complex) parameter.

Let un
j denote u(xj , tn). The obvious, and most widely used, way of representing the

time derivative in Eq. (A.30) is through the so-called forward Euler differencing equation

∂u

∂τ

∣∣∣∣
j,n

=
un+1

j − un
j

∆t
. (A.31)
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From the matrix equation (A.6) we obtain

∂2u

∂x2

∣∣∣∣
j,n

=
−un

j−2 + 16un
j−1 − 30un

j + 16un
j+1 − un

j+2

12a2
. (A.32)

This finite-difference approximation to Eq. (A.30) is simply a fourth-order FTCS (Forward

Time Centred Space) representation.

The von Neumann stability analysis assumes independent solutions of the difference

equations above of the form

un
j = ξn(k)eıkja . (A.33)

The amplification factor ξ(k), can be found by simply substituting Eq. (A.33) back

into Eq. (A.32). Dividing by ξn, yields

ξ(k) = 1 +
Λ2 (α − ı) ∆τ

(1 + α2)
32 cos(ka) − 2 cos(2ka) − 30

12a2
. (A.34)

Using the double-angle trigonometric identities, the equation above transforms into

ξ(k) = 1 − 4Λ2 (α − ı) ∆τ

(1 + α2) a2
sin2(

ka

2
)
[
1 +

1
3

sin2(
ka

2
)
]

, (A.35)

and the stability condition |ξ(k)| ≤ 1 yields

∆τ ≤ 3
4

α

2

( a

Λ

)2
. (A.36)

The factor 3/4 is the immediate consequence of using Eq. (A.32) instead of a simpler

second-order formula for the second-order spatial derivatives: A small price to pay for the

added precision. Extending the above analysis for a two-dimensional space with the same

discretisation step a is trivial, leading to

∆τ ≤ 3
8

α

2

( a

Λ

)2
. (A.37)

For the material parameters employed during this work, namely those of Permalloy, the

largest time step ∆t must conform to values smaller than ≈ 6.6 fs for a = 4 nm. A similar

analysis for the Crank-Nicolson scheme would reveal it unconditionally stable for any ∆t

value.

A.2 α Monitoring

Self-Consistency, Quantitative Error Measurement, and Numerical Break-

down

The mathematical stability of numerical integration schemes, such as the one proposed

above, should not be regarded as a statement of the physical meaningfulness of simulated
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data. If the need for controlling the allowed time step values is well recognised in the

literature, only empirical estimations could be made so far [75]. On the other hand, the

development of self-consistency criteria has received considerable attention since the early

days of micromagnetics [22]. Recently, we have introduced a first self-consistency criterion

for the solution of the LLG equation [78, 79]. This criterion provides for quantitative

error measurements even in situations where the mathematical stability of the integration

scheme is not challenged.

Disregarding the damping contribution to the LLG equation, a constant applied field

can only be responsible for a precessional motion of magnetisation which leaves the energy

constant. Inversely, the energy rate of change is necessarily a function of the damping

parameter α. Starting from the general expression of the system’s free energy functional,

the total energy rate of change can be written as (see Sect. 1.2.3)

dW

dτ
= −α

∫
Ω

(
∂m
∂τ

)2

dr . (A.38)

Although there is no local counterpart to this equation (except in the macrospin approxi-

mation), the LLG equation allows to write an expression connecting, at every grid point,

the effective field to the rate of change of magnetisation (see Sect. 1.2.3, Eq. (1.55))

heff · ∂m
∂τ

= α

(
∂m
∂τ

)2

. (A.39)

Both Eq. (A.38) and Eq. (A.39) allow for the recalculation of the damping parameter α

during magnetisation motion. In particular, through an average of Eq. (A.39), the value

of α can be recalculated without the need to evaluate the system’s total energy. Given

the arguments presented earlier this is the most error-free procedure available to us and

it was the one implemented in the code.

The proposed numerical integration scheme was then validated through a set of trans-

verse oscillation experiments, similar to those presented in Chap. 3. In these, a Permalloy

platelet of dimensions 500 × 250 × 5 nm3 (in an initial S state) is subjected to a sole

transverse (y-directed) field step, the intensity of which was chosen so as to generate a

strong oscillatory motion without inducing switching. The average magnetisation curves

are shown in Fig. A.5, along with two magnetisation distribution snapshots corresponding

to the first oscillation extrema. The recalculated damping parameter αdyn was contin-

uously monitored as a function of time as shown in Fig. A.5d along with its macrospin
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Figure A.5: (Colour) (a) Average magnetisation components evolution for a transverse

oscillations test simulation. The dots displayed on top of the average x magnetisation

component represent the extremum magnetisation distributions during oscillation and are

represented in (b). (c)–(e) Longitudinal average magnetisation component and recalculated

α values as a function of time.
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Figure A.6: First-order backward and forward αdyn values together with their average

(dashed curve) and the second-order formula value (solid curve on top of the dashed one).

analogue αMS (Fig. A.5e) (these quantities were define in Sect. 3.2). Associated with

the average in-plane oscillation of magnetisation we find corresponding oscillations in the

value of αdyn. These deviations from the imposed α value are strictly associated with

the evaluation of time derivatives, maximum deviations occurring when the magnetisation

movement (as a whole) slows down and reverses direction. Allowing for a maximum de-

viation of 5% constraints the allowed time step values to a few tens of femtoseconds. A

value of ∆t = 25 fs was used in all simulations presented in the main body of the text.

The recalculated damping parameter αdyn provides for an extremely sensitive tool for

quantitatively measuring time domain errors during magnetisation motion. Accordingly,

great care must be taken when evaluating Eq. (A.39), since it combines quantities defined

at specific time instants (heff) with time derivatives of the magnetisation. In the associated

discretised expressions, to first-order in time, the quantity ∂m/∂τ can be approximated

through the use of either a backward or a forward differencing formula. For the transverse

oscillations experiment of Fig. A.5, the values arising from these two implementations are

shown in Fig. A.6, for the first oscillation period of 〈mx〉. The curves shown are markedly

different from each other and from that given in Fig. A.5d. Higher-order formulae are

evidently required in evaluating the time derivatives in Eq. (A.39). Both the average of

the first-order forward and backward values and a true second-order expression for ∂m/∂τ

produce the same data, as shown in Fig. A.6. For simplicity in bookkeeping operations,

the average of first-order values was used in producing the data given in the main text.
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Although a quantitative time domain error measure is now available through the re-

calculated damping parameter, spatial discretisation procedures must not be neglected.

It is the authors’ opinion, based on the experience gained over the past years, that in

situations where micromagnetic structures are nucleated, the errors introduced due to

insufficient spatial meshes greatly surpass those arising from carefully chosen time inte-

gration schemes. These, essentially, spatial domain errors can have a significant influence

on the time domain magnetisation motion and the monitoring of αdyn is of much help

in pinpointing such potentially problematic time windows. A striking example of this

statement can be found by looking at the results of the µMAG’s Standard Problem No.

4 [51, 78] (see App. B).

It is noteworthy to point out that this quantitative error measure is independent of

the numerical integration scheme used and could be effectively used as an adaptive time

step control parameter through the specification of the maximum allowed error on αdyn.

Additionally, this time domain error measure allows for the quantification of the ac-

curacy impact of the different implicit contributions to the numerical integration scheme.

As stated above, a simple analogy with the stability analysis of diffusion equations, leads

us to the sole inclusion of exchange contributions in the implicit terms of the proposed

Crank-Nicolson scheme. Equipped with the control tool of damping parameter recalcu-

lation, a detailed analysis of the stability features of different effective field terms may

now be undertaken. Focusing on the first oscillation period in Fig. A.5, corresponding to

the first drop in the value of αdyn, a comparison is made in Fig. A.7a between different

contributions to the implicit terms in the discretised LLG equation: the sole inclusion of

exchange contributions, exchange contributions plus the out-of-plane demagnetising field

component, and finally exchange plus all demagnetising contributions, still restricted to

first-neighbours interactions. The data shown, clearly reveals that the sole inclusion of

exchange contributions leads to the most effective stabilisation procedure. In order to

achieve the same error level in the αdyn parameter, when considering all demagnetising

contributions, time step values must be reduced by more than an order of magnitude,

thereby increasing by the same amount the total computational time. In addition, error

sign changes dramatically with the inclusion of implicit demagnetising terms, going from

negative from positive values. Focusing on the same time window, the opportunity is

seized to clearly demonstrate that the time dependence of recalculated damping parame-
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Figure A.7: (a) αdyn values as a function of time step for different contributions to the im-

plicit terms in the numerical integration scheme: i Exchange contributions only, ii exchange

plus the out-of-plane demagnetising component, and iii exchange plus all demagnetising

contributions. (b) αMS curves as a function of time for the first peak in αdyn using ex-

change contributions only. The different curves corresponding to different time step values

clearly demonstrate that the time variations of the macrospin equivalent of αdyn are not the

result of numerical artifacts.

ter αMS, which can be interpreted as a measure of the degree of macrospin like behaviour

in non-uniform magnetisation distributions, is not the result of poor numerical procedures

(Fig. A.7b).

A straightforward comparison with a fully explicit scheme allows to further explore the

meaning of this error measure. αdyn values for three simulations done using an explicit

integration scheme are compared with the previous curve (Fig. A.8). Two comments should

be made when looking at the data. First, as long as explicit simulations do not breakdown,

the magnitude of error in αdyn remains comparable to those obtained using the optimised
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Figure A.8: Comparison between αdyn values for the Crank-Nicolson integration scheme (a)

and those using the simpler explicit scheme (b). (c) Different energy values corresponding

to an explicit calculation using a time step of 10 fs.

semi-implicit Crank-Nicolson scheme. Second, a comparison between the time evolution of

αdyn and of the different energy components clearly highlights the usefulness of the former

as a numerical control parameter. Catastrophic numerical breakdown is usually associated

with a divergent increase in the system’s total energy. Indeed, magnetisation distributions

arising from a unstable calculation present the characteristic feature of large amplitude

anti-correlated fluctuations between adjacent grid locations, which lead to an immediate

rise of the exchange energy. According to Eq. (A.38), however, under time-independent

external energy contributions, energy may only increase if and only if the parameter α

becomes negative. Continuous monitoring of αdyn allows for the detection of the onset

of instabilities, in this particular case, more than 0.2 ns in advance of the increase in the

system’s total energy value.

A.3 Torque Monitoring (Topology)

As stated in Sect. A.1.1, the maximum value of the reduced torque’s norm provides for the

most reliable (and physically justifiable) convergence parameter in static micromagnetic
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simulations. Such parameter allows to obtain, when studying magnetisation dynamics,

an additional information regarding the particular interplay between the spatial and time

components of dynamical simulations. Consider, for instance, the easy axis switching ex-

periment described in Sect. 4.1. For the applied field parameters used, switching occurred

through a mechanism where vortex nucleation might well have taken place. Here, we shall

repeat this experiment, now slightly changing the pulse time profile (see Fig. A.9). If the

average magnetisation dynamics is basically not altered, vortices are now clearly nucleated

(see Fig. A.9b). Besides, the maximum (and minimum) out-of-plane magnetisation com-

ponents vary sharply at specific time instants (Fig. A.9b), corresponding to pronounced

peaks in the maximum value of torque in the system (Fig. A.9c). Innocuous as these

variations may seem, if referring to their influence on average magnetisation curves, this

calculation violates one of the basic postulates of micromagnetic theory, namely continuity.

The indicated peak in the maximum value of the reduced torque represents a small

time window within which the out-of-plane direction of the vortices change, as depicted

in the inserted diagram, corresponding to the sudden appearance of a negative out-of-

plane magnetisation value. Magnetisation distribution snapshots taken during this time

interval (Fig. A.10) clearly demonstrate the magnetisation processes responsible for this

sharp variations. Due to a strong “gyrotropic” motion, vortex cores may get compressed

to lateral scales smaller than the smallest mesh dimension. When this occurs, the vortex

may literally fall inside the mesh and flip its centre region. Such transitions within the

magnetic body violate micromagnetic topological principles and correspond to a purely

numerical artifact [80, 81]. In reality, a three-dimensional spins configuration in a two-

dimensional space displays no topological barrier [80]. Otherwise stated, from a strictly

mathematical viewpoint, every spin distribution may be transformed into any other. The

transition from an up to a down vortex can be therefore achieved through two distinct

processes, as evidenced in Fig. A.11. Either through the opening of the vortex core region

(left path) or through the rotation of the vortex as a whole towards its final magnetisation

configuration (right path).

Nevertheless, without breaking the continuity imposed by micromagnetic theory, the

sole possible transition allowing a change in the vortex rotational vector requires the

rotation as a whole of the magnetisation distribution, in opposition to the severe energy

constraints of the system. In this sense, vortex core flipping can be termed as a quasi-

topological impossibility [81]. Another possibility is to displace the vortex towards the
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Figure A.9: Easy axis driven magnetisation switching. (a) In-plane average magnetisation

components. (b) Maximum, average, and minimum out-of-plane magnetisation values.

(c) Reduced torque versus time. The signalled sharp peaks correspond to the short time

windows where vortex core flipping occurs (inserted diagram). Shaded areas indicate the

period of time where vortices exist.

edge of the magnetic body and out of the sample and reintroduce it with a reversed core

direction. This however may be forbidden due to “gyrotropic” effects.

We should stress the fact that when performing dynamical micromagnetic simulations
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Figure A.10: (Colour) Out-of-plane magnetisation distribution snapshots corresponding to

the first sharp peak in Fig A.9c. The encircled regions pinpoint the vortex core flipping

arising from an insufficient spatial discretisation associated with strong “gyrotropic” effects.

the “gyrotropic” effects, such as those evidenced above, even if not leading to catastrophic

situations, may considerably stiffen the motion of strongly localised micromagnetic struc-

tures such as vortices. In this manner, purely numerical, spurious magnetisation move-

ments may be present in the system, resulting in unpredictable, but assuredly, non-physical

characteristics, raising the error level in αdyn accordingly, as demonstrated in App. B in

another context.
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Figure A.11: Schematic representation of the possible mechanism of vortex core flipping

through an unit sphere projection of m. Left: Vortex core opening towards the equatorial

plane. Right: Rotation as a whole.

A.4 Structural Disorder

By their very nature, finite-difference methods are commonly regarded an being incapable

of handling structural disorder in contrast with finite elements methods. Up to some

extent, however, realistic structural disorder can be modelled within the framework of a

full finite difference micromagnetic code, and this without hindering in any way whatsoever

the efficiency resulting from the use of FFT acceleration techniques.

Generally speaking, one must be able to independently address the magnetic properties

of individual grains in a textured magnetic layer. This has been simply achieved by the



A.4. STRUCTURAL DISORDER 115

(a) (b)

Delaunay points

(c)

(d)

Random cubic
anisotropy

Voronoi
tessellation

Figure A.12: Two- and three-dimensional grain generation methodology. (a) Unbounded

Voronoi diagram associated with a given distribution of Delaunay points in a plane. (b)

Superposition of the boundaries of the simulated magnetic platelet. (c) Trimming of the

Voronoi diagram to the boundaries of the platelet. (d) Straightforward thickness projection

maintaining the same grain cross-section.

superposition of a Voronoi diagram, representing an ensemble of ferromagnetic grains, on

top of the magnetisation grid used. Each grid point may then be uniquely associated

with a single grain, inheriting, therefore, its magnetic properties. Here, we have only
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considered magnetic anisotropy. Exchange variations, besides being poorly documented

in the literature, raise the additional question of inter-grain interactions.

Since the Voronoi diagram preferably represents a physical grain structure, its gener-

ation was strictly controlled. By definition, a Voronoi diagram (also sometimes called a

Dirichlet tessellation) is the partitioning of a plane with n points into n convex polygons,

such that each polygon contains exactly one point and every point in a given polygon is

closer to its central point than to any other (Fig. A.12). A regular distribution of points,

i.e. all points are belonging to the vertices of a perfectly regular two-dimensional triangu-

lar mesh (all triangles being equal and equilateral), results in a Voronoi diagram composed

of perfect hexagons. Introducing slight misarrangements of these Delaunay points effec-

tively controls the degree of irregularity of the resulting tessellation, therefore producing

a more realistic honeycomb pattern. To an ensemble of grains so defined was associated

a distribution of cubic anisotropy axes. Three random independent angles are sufficient

to define the director cosines. All the steps above have been performed using the freely

available Geompack computational geometry package [82].

Standard computational geometry procedures allow for the handling of such two-

dimensional polygon diagrams and their immediate transformation into a real three-

dimensional grain distribution (Fig. A.12d). This step essentially requires a reordering of

the (now) three-dimensional points in order to define planes corresponding to grain bound-

aries [83, 84]. As before, the Geompack package can be used for the three-dimensional

subdivision of grains if needed.
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µMAG Standard Problem No. 4

In the first quarter of year 2000, the µMAG team at the National Institute of Standards

and Technology (NIST) [38] released the 4th micromagnetic standard problem [51]. Its aim

was to extend the scope of the previously released proposals by focusing on the dynamical

aspects of micromagnetic calculations. As usual, and explicitly stated in the specifications,

submitted reports should be shown to be independent of the spatial discretisation values

used. In addition, since this is a fully dynamical problem, time step invariability should also

be demonstrated. Here we shall make full use of the recalculated damping parameter as

an innovative way of controlling the simulation results and to validate the set of numerical

parameters employed.

Two separate problems were actually proposed. Both regarded the dynamical response

of a thin film platelet with dimensions 500 × 125 × 3 nm3. The material parameters used

are A = 1.3 × 10−11 J/m (1.3 × 10−6 erg/cm), Ms = 8 × 105 A/m (800 emu/cc), Ku = 0,

and α = 0.02 [51](a). The response of this element, in an initial S state pointing in the +x

direction, is to be determined when subjected to the action of two uniform field steps. The

magnitude and orientation of the first field does not induce magnetisation switching and

the system as a whole simply oscillates around its new equilibrium position before coming

to a complete halt. This behaviour adds nothing to the transverse oscillations experiments

considered in Chap. 3 and App. A, and shall not be further discussed here. The second field

configuration, however, induces a quite different dynamical behaviour, strongly resembling

the easy axis switching experiments of Sect. 4.1. The average y magnetisation curves for

(a)Graphical representations will also make use of the SI system of units in order to facilitate possible

comparisons with the µMAG submission pages.

117
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Figure B.1: (Colour) Reprinted from µMAG’s web site (June 2002). Transverse average

magnetisation curves for the second field configuration and for the different submitted re-

ports as a function of time.

all the submitted reports to this second set of field parameters are displayed in Fig. B.1

for the smallest mesh size exploited by the respective authors. Differences between the

given average curves can be clearly discerned. The following two sections aim at a brief

discussion of these results.

B.1 Static Energy Convergence

The remanent S state magnetisation distribution for the three different demagnetising field

calculations proposed by the OOMMF package are directly compared with our own code

(here represented by the acronym IDMMC, standing for Implicit Dynamical MicroMag-

netic Code) in Fig. B.2. As seen above, different ways of evaluating the demagnetising

interactions can provide quite different results. If the differences in the rate of energy con-

vergence can be deemed minor, all should converge to the same energy value as the spatial

discretisation tends towards zero. Such is evidently not the case for the “ConstMag”

scheme if compared with the two other schemes available in the OOMMF package and

our own method. For this “ConstMag” scheme, averaging procedures do seem to produce

inaccurate results in contrast with the conclusions drawn out from the Standard Problem

No. 2 where the magnetisation distribution was taken in a fully aligned direction [85]. De-

spite the strong differences displayed in Fig. B.2, further comparisons between OOMMF

data and our own simulations will, for the sake of consistency (and to allow a direct com-
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Figure B.2: Static energy convergence for an S state using the parameters of the Standard

Problem No. 4. The different demagnetising evaluation schemes available in the OOMMF

2D package are here compared with our own code (IDMMC).

parison with the data given in [51]), suppose the use of the “ConstMag” demagnetising

field evaluation procedure.

B.2 Dynamic Analysis

We shall start with the discussion of our own set of results [78]. Figure B.3a presents the in-

plane average magnetisation components as a function of time for two mesh spacing values:

2 and 4 nm (thick and thin lines, respectively). Although both values are well below the

exchange length for the material parameters considered, visible differences appear after

approximately 0.5 ns. As seen in Fig. B.3b, these differences appear as soon as vortices

are nucleated in the interior of the element. Additionally, this time window corresponds

to an increase in the value of the recalculated damping parameter (Fig. B.3d).

A detailed view of the magnetisation processes occurring is next considered for the

smallest mesh spacing used (2 nm) and for different values of the integration time step

(Fig. B.4). Following the field pulse application, an anticlockwise rotation of the inner core

region of the platelet produces two 360◦ walls (0.10 to 0.20 ns snapshots) that violently

unwind at the cost of generating localised magnetisation structures such as vortices (0.50

ns snapshot). The time window corresponding to the creation, displacement, and eventual

expulsion of these micromagnetic structures also corresponds to the interval where differ-

ences between the proposed solutions creep in. Although the average magnetisation curves
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Figure B.3: (a) Average in-plane magnetisation curves for two mesh spacing values: 2

and 4 nm (thick and thin lines, respectively). (b) Average, maximum, and minimum out-

of-plane magnetisation curves (2 nm). (c) Maximum torque’s norm and (d) recalculated

damping parameter, respectively (2 nm). The shaded areas indicate the presence of vortices.

in Fig. B.4a are indiscernible, the recalculated damping parameter is highly sensitive to

variations in the time step values used. It should be noted that the largest errors in αdyn

occur at approximately 0.5 nanoseconds.

Comparing the average magnetisation curves in Figs. B.3 and B.4 indicates that spatial

discretisation values play a preponderant role in determining the magnetisation behaviour

of the Standard Problem No. 4. A detailed comparison was made between our results

achieved with a mesh spacing of 2 nm and those obtained through the use of the publicly
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Figure B.4: (Colour) (a) Average transverse magnetisation curves for a mesh spacing value

of 2 nm and for two integration time steps: 25 and 10 fs. The points shown correspond

to the times on the different magnetisation snapshots displayed below. (b) Corresponding

recalculated α values (red: 25 fs; green: 10 fs).

available OOMMF package. In order to perform a relevant comparison with the submission

results from the NIST team (McMichael et al.), OOMMF simulations were made using
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Figure B.5: (Colour) Comparison between the average magnetisation curves for two mesh

spacing values in the OOMMF simulations (red: 3.125 nm; black: 1.25 nm). Our data is

shown in green for a mesh spacing value of 2 nm.

the same demagnetising field evaluation procedures (“ConstMag”). Results are shown in

Fig. B.5: Our submission (green), that originally posted by the NIST team (red: 3.125

nm spacing), and a simulation using the same parameters with the exception of the mesh

spacing, now decreased to 1.25 nm (black). Clearly, as the mesh spacing value is decreased,

OOMMF results approach our own [86]. In particular, the fine details missing in all other

contributions (as seen in Fig. B.1), start to appear. These exactly coincide with the time

window were vortices are present in the platelet. A more correct spatial description of such

structures has, as one can see, dramatic consequences regarding the average dynamical

magnetisation curves, highlighting the strong interdependence between spatial and time

domain micromagnetic simulation parameters. In conclusion, strong “gyrotropic” effects

do require a significant decrease of the allowed mesh spacing values in order for mesh

independency to be attained and in this regard the efficiency of numerical procedures can

play a significant role in achieving the smallest possible computational time.
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